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Abstract

Global strategic alliances have become a defining feature of the container ship-
ping industry, allowing firms to pool resources and coordinate operations to achieve
efficiency gains. However, these alliances also raise concerns about their potential to
limit competition and enhance market power. This paper examines the formation and
dissolution of global strategic alliances in the container shipping industry, with a par-
ticular focus on the 2M Alliance between Maersk and MSC. Using empirical data and
a multi-market Cournot oligopoly model with capacity constraints, we analyze the in-
centives behind alliance formation, the efficiency gains from vessel reallocation, and
the impact on market competition and consumer welfare. The findings reveal that
vessel reallocation plays a crucial role in enhancing supply-side efficiency, but the ex-
tent of these gains depends on the comparative advantage of alliance members and
aggregate market conditions. Counterfactual simulations demonstrate that alliances
can increase efficiency and consumer welfare when members have distinct fleet compo-
sitions, but they may also enhance market power under certain conditions. The study
concludes with policy implications regarding the regulation and long-term viability of
global strategic alliances in the shipping industry.
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1 Introduction

Global strategic alliances have become a defining feature of many industries, including air-

lines, automotive manufacturing, and container shipping. These alliances typically involve

some form of supply-side coordination, such as code-sharing in airlines, joint production

ventures in the auto industry, and vessel-sharing agreements in container shipping. By pool-

ing resources and coordinating operations, firms seek to achieve efficiency gains that would

be difficult to realize independently. However, these alliances have also drawn increasing

scrutiny from antitrust regulators due to their potential to limit competition. For instance,

the Northeast Alliance between American Airlines and JetBlue was recently blocked by the

U.S. Department of Justice on antitrust grounds, while the expiration of the Consortia Block

Exemption Regulation (CBER) in the European Union has raised concerns over the future

regulatory landscape of container shipping alliances. As these alliances reshape global mar-

kets, understanding their incentives, market power effects, and welfare implications becomes

increasingly critical.

This paper examines the incentives behind the formation and dissolution of global strate-

gic alliances in the container shipping industry and evaluates their welfare implications.

Specifically, it seeks to disentangle the market power and efficiency effects of strategic al-

liances, and to evaluate their economic impact. The study investigates the primary sources of

efficiency gains, such as vessel reallocation, which enhances supply-side efficiency by deploy-

ing different vessel classes to markets where they operate most effectively. It also examines

how market power and efficiency considerations influence the stability of alliances, explor-

ing whether firms primarily seek these partnerships to increase their cost competitiveness

or to gain strategic advantages. Additionally, external factors such as demand fluctuations

and the comparative advantage of alliance members are analyzed to understand their role

in alliance stability. Finally, the study contrasts the welfare implications of alliances with

those of horizontal mergers, highlighting their different impacts on market competition and

consumer surplus.
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To address these questions, this paper first presents stylized facts about vessel size dis-

tribution across different markets, illustrating the existence of varying economies and dis-

economies of scale. The analysis documents how the 2M Alliance, formed between Maersk

and MSC, led to a reallocation of vessel sizes across trade routes. By strategically deploying

different vessels to routes where they are most cost-effective, alliance members can improve

efficiency and capacity utilization.

The paper then develops a multi-market Cournot oligopoly model that incorporates ca-

pacity constraints across different vessel classes, providing a structural framework to analyze

alliance formation. The equilibrium concept is discussed, and a toy example is introduced

to illustrate how vessel reallocation enhances efficiency. The model is estimated using a rich

dataset on container trade volumes, freight rates, and vessel deployments. The estimation

strategy, detailed in the paper, estimates demand and supply-side parameters, ensuring the

model accurately reflects observed market behaviors and capacity allocation decisions of car-

riers. Finally, counterfactual analyses simulate alternative alliance configurations to quantify

the effects of alliance formation and dissolution, providing insights into the trade-offs between

efficiency and market power.

The findings reveal significant heterogeneity in economies of scale across markets. In

long-haul routes, such as those between Asia and Northern Europe, larger vessels achieve

substantial cost savings due to economies of scale. Conversely, in shorter routes like trans-

Atlantic trade, the benefits of larger vessels diminish, as port congestion and infrastructure

limitations erode potential cost advantages. The counterfactual analysis demonstrates that

the 2M Alliance led to substantial efficiency gains through vessel reallocation, lowering op-

erational costs and increasing consumer surplus. However, it also enhanced market power,

reducing competition in certain markets. Notably, the study finds that the dissolution of

the 2M Alliance in 2023 was driven by growing asymmetry between Maersk and MSC. As

MSC expanded its fleet and surpassed Maersk in capacity, the alliance became less mutually

beneficial, prompting its termination.
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The paper also explores how changes in comparative advantage influence alliance sta-

bility. When alliance members have distinct fleet compositions, the efficiency benefits of

cooperation are more pronounced, increasing the likelihood of alliance formation. However,

as fleet compositions converge, the efficiency rationale for maintaining an alliance weakens,

making dissolution more probable. Additionally, the analysis shows that aggregate demand

conditions play a critical role in alliance incentives. In periods of low demand, alliances

are more likely to form as firms seek to consolidate market power to sustain profitability.

In contrast, when demand is high, the efficiency gains from vessel reallocation become the

dominant driver of alliance formation.

These findings have important policy implications. While alliances can generate substan-

tial efficiency benefits, their potential to enhance market power warrants close regulatory

scrutiny. Unlike mergers, alliances are inherently less stable and may dissolve as market

conditions change. This natural instability can mitigate some anti-competitive concerns but

also raises challenges in assessing their long-term impact on welfare. Policymakers should

carefully evaluate the degree of comparative advantage among alliance members when assess-

ing their potential benefits. If alliance members have similar fleet compositions and market

positions, the argument for efficiency gains becomes weaker, suggesting that regulatory in-

tervention may be necessary to prevent anti-competitive outcomes.

Related Literature This paper contributes to the vast maritime economics literature

on the incentive and impact of global strategic alliances. Ghorbani et al. (2022) provides a

systematic review over the literature, and pointed out that economies of scale in vessel size,

economies of scope in geographic coverage, and increasing capacity utilization are among

the main incentives for carriers to form strategic alliances (See Song and Panayides (2002),

Panayides and Wiedmer (2011), Caschili et al. (2014), Cruijssen et al. (2007)). Our paper

quantitatively estimates the extent of (dis-)economies of scale of vessel sizes across major

trade lanes, and show that reallocation of vessel of different sizes across market improves

alliance members’ supply side efficiency. The literature (Das (2011), Agarwal and Ergun
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(2010), Prashant and Harbir (2009) and Mitsuhashi and Greve (2009)) shows that market

complementarity, mainly depending on ship specifications, is a major factor in carriers’

alliance partner selection. We show that carriers with larger difference in their comparative

advantage in terms of vessel size distribution have larger incentive to form alliance and

alliance is more stable.

Given the similarity of strategic alliance and horizontal mergers, this paper also con-

tributes to the literature examining the reallocation of assets and capacities resulting from

mergers.1 Andrade and Stafford (2004) analyze how mergers serve as mechanisms for re-

allocating existing assets within industries. They find that mergers can either facilitate

industry expansion by increasing firms’ size and scale or lead to a reduction in the indus-

try’s asset base by eliminating duplicate functions and rationalizing operations. Jovanovic

and Rousseau (2008) model mergers as reallocation waves, suggesting that mergers spread

new technology similarly to the entry and exit of firms. They argue that mergers play a

crucial role in reallocating capital, especially during periods of significant technological ad-

vancements. Demirer and Karaduman (2024) study the effects of mergers and acquisitions

on efficiency within the U.S. power generation industry. They find that acquisitions lead to

an efficiency increase in acquired plants, primarily through operational improvements rather

than high-cost capital investments. This suggests that mergers can reallocate assets to more

productive uses, enhancing overall efficiency. Our paper contributes to this strand of litera-

ture by showing a clear case of global asset reallocation in the container shipping industry

where comparative advantage of different assets differ across markets.

1We explained in detail later in the model section on the difference between horizontal merger and strategic
alliances.
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2 Data, Institution and Stylized Facts

2.1 Strategic Alliance and Container Shipping Industry

The container shipping industry has undergone a significant transformation from the tradi-

tional conference system to the current alliance framework.2 Historically, shipping confer-

ences—formal agreements among shipping companies—regulated freight rates and coordi-

nated schedules to stabilize the market. However, concerns over anti-competitive practices

led to regulatory changes, notably the U.S. Ocean Shipping Reform Act of 1998 and the

European Union’s repeal of conference exemptions in 2008, which diminished the influence

of these conferences. In response, shipping companies began forming strategic alliances in

the mid-1990s, allowing them to share vessels and optimize operations without engaging in

price-fixing. These alliances enable carriers to offer extensive service networks and achieve

economies of scale by pooling resources. Strategic alliances are particularly crucial in the

container shipping industry due to high operational costs and the need for global service

coverage. By collaborating, carriers can reduce expenses, enhance service frequency, and

improve capacity utilization.

The evolution of global alliances in the container shipping industry can be categorized

into four distinct generations (See Figure 1 for a visual summary from updated graph of

Talley (2011))3:

• First Generation (1996–1998): This period saw the emergence of ambitious al-

liances such as the Global Alliance, Grand Alliance, and the partnership between

Maersk and SeaLand. Despite their expansive goals, these alliances were often unsta-

ble and short-lived.

• Second Generation (1998–2012): Alliances like the New World Alliance, Grand

Alliance, and CKHY characterized this era. These partnerships provided stability

2For relevant work, please see Merk (2018), Lim (2020) and Wang (2015). For a review paper, please see
Ghorbani et al. (2022).

3This categorization of four generations of alliance is from Merk (2018).

6



Figure 1: Timeline of Global Strategic Alliance

Source: Updated from Notteboom, T. (2012), Chapter 12: Container shipping, in: Talley, W. (ed.), The Blackwell
Companion to Maritime Economics, Wiley-Blackwell Publishing, ISBN: 978-1-4443-3024-3, pp. 230-262.

and were predominantly utilized by mid-sized and smaller carriers, allowing them to

enhance service offerings and operational efficiencies.

• Third Generation (2012–2017): During this phase, major carriers began partic-

ipating in alliances, leading to formations such as G6, CKHYE, 2M, and O3. This

transition period experienced fluctuating alliance structures, reflecting the industry’s

efforts to adapt to changing market dynamics.

• Fourth Generation (2017–Present): The current landscape features three primary

alliances: 2M, Ocean Alliance, and THE Alliance. Notably, no single carrier dominates

these alliances, and they collectively encompass the eight largest global carriers, rep-

resenting a significant consolidation in the industry

Our data sample mainly covers the third and fourth generation of the strategic alliances

in the container shipping industry, where carriers formed alliances in pursuit of economies
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of scale in vessel size, and economies of scope in coverage, and to improve their capacity

utilization, especially with the arrival of ultra large or mega vessels.

2.2 Data

Our empirical analysis is based on two primary datasets. Our first key data source is the

weekly capacity and vessel deployment dataset from Sea Intelligence.4 This dataset provides

information on the vessel size of the fleets operated by different firms and alliances, as well

as the ownership data of vessels. It provides us with measure of vessel size distribution for

both capacity and quantities supplied across markets for each carriers and alliances and also

market share information. Second, we use monthly container trade flow volume and price

index data from CTS to estimate the demand for container shipping services. This dataset

covers 22 origin-destination subregional trade flows, aggregated from more granular monthly

port-to-port shipping manifest information. Additionally, we obtained origin-destination

container price indices at the subregional level. A key advantage of this price index is that it

reflects the actual freight rates paid by shippers to carriers, incorporating both spot freight

rates and contractual rates.5

2.3 Stylized Facts

Vessel Size Distribution Across Markets Container ship sizes have grown significantly

since the introduction of containerized shipping in the 1960s. As shown in Figure 2, container

vessels can be broadly categorized into four size classes:

4Sea Intelligence uses this dataset in its flagship TCO reports.
5In the container shipping industry, spot freight rates are commonly referred to as “Freight of All Kinds”

(FAK), while contractual rates are referred to as “Named Account” (NAC). Because the price index is
derived from the universe of shipping manifests, it provides a comprehensive and realistic representation of
transportation costs by combining spot and contractual rates.Due to legal and regulatory concerns, container
shipping freight rate data is rare and difficult to obtain. Excessive disclosure of freight rate information could
facilitate tacit collusion or coordinated pricing among carriers. As a result, we rely on an aggregated measure
of freight rates, as carrier-specific prices are strictly prohibited from being disclosed by CTS. Wong (2022)
also highlights the significant challenges in accessing detailed container shipping freight rate data. However,
further insights into carriers’ pricing behavior using more detailed proprietary data are provided in the
author’s other work with logistics technology firms.
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1. Panamax (2,000 - 5,000 TEU)

2. Post-Panamax (5,000 - 10,000 TEU)

3. Neo-Panamax (10,000 - 14,500 TEU)

4. Ultra-Large Container Ships (14,500 - 24,000 TEU)

Figure 2: Container Vessel Size Comparison

We define a market broadly as a trade route between an origin region and a destination

region. Based on this classification, the global container shipping market consists of the

following key trade routes:

• Far-East-West-Bound (FEWB): Asia to Mediterranean, Asia to Northern Europe

• Trans-Pacific-East-Bound (TPEB): Asia to North America West Coast, Asia to North

America East Coast
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Figure 3: Vessel Size Distribution Across Markets

• Trans-Atlantic: Northern Europe to North America East Coast

Figure 3 presents the distribution of vessel size classes across markets over time. By the

mid-2010s, the Asia to Northern Europe market was dominated by ultra-large vessels, while

the Asia to Mediterranean market was primarily composed of Neo-Panamax vessels. On

trans-Pacific routes, Post-Panamax vessels became the predominant class, whereas smaller

vessels were mostly used in trans-Atlantic trade.

One key factor driving these differences in vessel size distribution is the economies and

diseconomies of scale associated with vessel size. Larger vessels benefit from economies of

scale at sea, as crew and fuel costs do not increase proportionally with vessel size. However,

port infrastructure constraints can increase operational costs for larger vessels due to longer

berthing, loading, and unloading times. As shown in Table 1, sea distances are significantly

longer on FEWB trade routes and shortest on trans-Atlantic routes. This pattern is con-

sistent with the observation that larger vessels are primarily deployed on long-haul routes

where economies of scale are most advantageous.
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Table 1: Approximate Sea Distances and Transit Times by Trade Route

Trade Route Distance (nautical miles) Main Route Transit Time (days)

Asia to Northern Europe 10,500 – 12,000 Suez Canal 30 – 40
Asia to Mediterranean (West) 8,500 – 10,500 Suez Canal 25 – 35
Asia to Mediterranean (East) 7,500 – 9,000 Suez Canal 25 – 35
Asia to North America (West Coast) 5,500 – 7,000 Trans-Pacific 14 – 18
Asia to North America (East Coast) (via Panama) 10,500 – 12,000 Panama Canal 25 – 35
Asia to North America (East Coast) (via Suez) 12,000 – 13,000 Suez Canal 25 – 35
Trans-Atlantic (North America to Europe) 3,000 – 4,500 Direct Atlantic 8 – 12

The Case of 2M Alliance To analyze how the formation of a global strategic alliance

affects the operations of its members, we use the 2M Alliance as a case study. Established in

2015, the 2M Alliance was a long-term vessel-sharing agreement between Maersk Line and

MSC (Mediterranean Shipping Company), the two largest container shipping carriers at the

time. The alliance was formed in response to industry overcapacity, declining freight rates,

and the need for cost efficiencies following the global financial crisis and slowing global trade

growth. By pooling their fleets, Maersk and MSC aimed to optimize network efficiency,

reduce operational costs, and enhance service reliability on key East-West trade routes,

particularly between Asia, Europe, and North America.

At the time of the alliance’s formation, Maersk and MSC had distinct fleet compositions.

As shown in Figure 4, MSC operated a higher proportion of mid-to-large-sized vessels, while

Maersk had a comparative advantage in smaller vessels. To assess how the vessel size distri-

bution changed after the alliance, we compare the fleet compositions of Maersk and MSC in

2014 (pre-2M formation) and 2016 (post-2M formation) in Figure 5.

Prior to the 2M Alliance, Maersk allocated a significant share of its smaller vessels to

the Asia-Northern Europe (Asia-NEUR) market, where demand was high, despite larger

vessels being more cost-efficient due to economies of scale. After the alliance was estab-

lished, Maersk’s smaller vessels were reallocated to the Asia-North America East Coast

(Asia-NAEC), Asia-North America West Coast (Asia-NAWC), and Northern Europe-North

America East Coast (NEUR-NAEC) markets, where they could operate more efficiently.

Meanwhile, the alliance restricted deployments in the Asia-NEUR market to vessels larger

than 12,000 TEU. This case illustrates how forming a global strategic alliance enables carri-
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Figure 4: Maersk vs MSC Fleet in 2015

ers to optimize fleet deployment by reallocating vessels to markets where they operate most

efficiently.6

The shift in vessel size distribution is also reflected in the number of services operated

by Maersk and MSC. As shown in Figure 6, the number of services in the Asia-NEUR and

Asia-Mediterranean (Asia-MED) markets decreased as larger vessels were deployed in these

regions, while the number of services increased in other markets where smaller vessels were

more suitable after the formation of the 2M Alliance.

3 Model

3.1 Demand

We assume a log-log demand for each market m at time t:

Qmt = AmtP
−σ
mt (1)

6The reallocation of vessel size is further reflected in the shift in the market share contributions of Maersk
and MSC across different regions, as shown in Figure 15 in Appendix A.
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Figure 5: Maersk vs MSC Fleet: 2014 vs. 2016

Figure 6: Number of Services Over Time: 2M Alliance
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where Amt is the market-month specific demand shifter. Pmt, Qmt are the price and

quantity in market m at time t respectively and σ is the constant price elasticity of demand

across markets and time.

3.2 Supply

Fleet Capacity Allocation We assume carriers engage in a multi-market quantity-setting

game. Carrieri needs to allocate their fleet capacity across different vessel size and across

different trade lanes. We summarize their quantity allocation in the following matrix QQQ

QQQi

|Φi|×|Mi|
=

󰀵

󰀹󰀹󰀹󰀹󰀷

qim1
(φ1) . . . qim|M|

(φ1)

...
. . .

...

qim1
(φ|Φ|) . . . qim|M|

(φ|Φ|)

󰀶

󰀺󰀺󰀺󰀺󰀸
(2)

Each row of QQQ represents each vessel-size-bin (e.g., Panamax-class, Neo-Panamax-class,

ultra-large-class), and each column represents each market carrier i operates in. Carrier i

has a capacity constraint for each type of vessel

QQQi111 ≤ κκκi(Φi) (3)

where 111 is a vector of 1, and κκκi is a |Φi|×1 vector representing carrier i’s capacity constraint

across different types of vessels. Φi represents the range of vessel size in carrier i’s fleet.

Purchasing larger ships will result in higher Φi.

Variable CostsWe assume the variable cost of carrier i’s fleet is a function of its quantity

allocation QQQi and a cost matrix depending on the vessel size and specific market CCC:

CCC
|Φ|×|M|

=

󰀵

󰀹󰀹󰀹󰀹󰀷

cm1(φ1) . . . cm|M|(φ1)

...
. . .

...

cm1(φ|Φ|) . . . cm|M|(φ|Φ|)

󰀶

󰀺󰀺󰀺󰀺󰀸
(4)
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Each row of CCC represents vessel-size bin, and each column represents a market. We assume

each variable cost can be decomposed into a market-time specific component and a vessel

size component capturing the (dis)economies of scale.

log(cmt(φ)) = γmt󰁿󰁾󰁽󰂀
market-time specific component

+ h(φ,m)󰁿 󰁾󰁽 󰂀
vessel-size component

(5)

where γmt is a market-time specific fixed effect, which captures the market-specific supply

factors beyond vessel size that could change the variable cost of the shipping. For example,

any disruption like the Suez canal being blocked by Evergiven or Houthi’s attack will show

up in γmt. This effect will impact all carriers. h(m,φ) captures the impact of vessel size on

the marginal cost conditional on the market m. As we showed in the stylized facts before, the

economies of scale of vessel really depends on the sea distance of each market and the state

of maritime infrastructure (e.g., port’s ability to handle large ships). We will parametrize

the function h(·) in our estimation.

Then the total variable cost is the sum of dot product of the cost matrix and quantity

matrix:

TV C i = 111T (CCC ·QQQi)111 (6)

Profit Function Then the profit function faced by carrier i is

max
QQQi

󰀣
󰁛

m∈M

Pm(Q
i
m, Q

−i
m )Qi

m

󰀤
− TV C i (7)

s.t. QQQi111 ≤ κκκi(Φi)

where Qi
m is the column sum of quantity matrixQQQi, representing the total quantity carrier

i supplied in market m. The optimization problem faced by carrier i is to allocate its total

capacity across vessel size class Φi across each market to maximize its total profit. One thing

to note is that even though only the total quantity in each market Qi
m will determine the

revenue in market m, the composition of vessel of different size class will change the total
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variable cost, therefore the profit of each carrier.

3.3 Equilibrium

The equilibrium of this capacity constrained multi-market quantity setting game is charac-

terized as that ∀i ∈ It, the following condition holds:

QQQi∗ =argmax
QQQi

󰀣
󰁛

m∈M

Pm(Q
i
m, Q

−i∗
m )Qi

m

󰀤
− TV C i

s.t. QQQi∗111 ≤ κκκi(Φi)

NamelyQQQi∗ is a best response to other carriers’ strategyQQQ−i∗. We currently cannot prove

the uniqueness of the equilibrium. And to ensure the solvability of the equilibrium under a

fixed-point algorithm, we currently assumed a sequential move equilibrium solution concept.

We assume that, with any environment change (e.g., demand change or arrival of new ships),

the carrier with the highest capacity κκκi(Φi) sets their quantity first. We include the details

of the algorithm solving the equilibrium and robustness check in the Appendix B.

To understand the role of capacity constraint plays in the equilibrium, we can examine the

first order condition for carriers. In equilibrium, each carrier needs to satisfy the following:

MRi
m(Q

i
m, Q

−i∗
m )−mcim(QQQ

i
m) =

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

0, ∀m ∈ Mi, i ∈ I if QQQi∗111 < κκκi(Φi)

ιi, ∀m ∈ Mi, i ∈ I if QQQi∗111 = κκκi(Φi)

This condition indicates that when the capacity of carrier i is not binding, then the

marginal revenue should equals to marginal cost for all markets for all carriers. If, however,

that the capacity constraint is binding, then the difference between marginal revenue and

marginal cost (ιi) should be the same across all markets for each carrier. This ensures that

there is no incentive for carriers to reallocate quantities across each market. Note that the

marginal revenue only depends on the total quantity carrier i supplied in market m but the
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marginal cost depends on the composition of different vessel size class carrier deployed in

each market given the existence of economies of scale with respect to ship size.

3.4 Alliance Formation

Through the case study on 2M alliance, we noticed a reshuffling of different vessel size classes

across various markets. To translate that into the language of our model, the formation

of alliance between carrier i and j is similar to a reallocation of their aggregate capacity.

Formally the new capacity of carrier i after it forms alliance with carrier j is determined as:

κ̂κκi =
111Tκκκi

111Tκκκi +111Tκκκj
(κκκi + κκκj) (8)

after carrier i and j formed a strategic alliance, they will firstly pool their total global

capacity together ((κκκi + κκκj))and then divide it based on the fraction of capacity they con-

tributed ( 111Tκκκi

111Tκκκi+111Tκκκj ). An embedded assumption is that carrier i and j will not engage in tacit

collusion with each other and the cooperation is strictly on the supply side. This assumption

could regarded as too strong by some as the concern of collusive behavior is very prevalent

in this industry. Our focus in this paper is on the supply-side efficiency gain from forming

strategic alliance. Therefore, we will shut down the market conduct channel by assuming

alliance member will still maintain independence in their demand side marketing and pric-

ing activity by competing with each other in a quantity setting game. However, if alliance

formation is the same as a merger, then carrier i and j will choose to first maximize their

joint profit, and then divide the profit according to the capacity they contributed.

3.5 A Toy Example to Illustrate Efficiency Gain

To illustrate the mechanism of efficiency gain of strategic alliance formation, we devise a

toy example of two market, two player, and two type of ships. We assume the following

cost matrix (Table 2) where vessel type 1 has a lower variable cost in market 2 while vessel
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type 2 has a cost advantage in market 1. We assume the two markets are symmetric with

a demand shifter of 12, and the original capacity across two carriers are represented in the

upper panel of Table 3. After carrier 1 and 2 formed alliance, their capacity changed to the

lower panel of Table 3 according to Equation 8.

Table 2: Toy example: cost matrix

Market 1 Market 2
vessel type 1 1 0.8
vessel type 2 0.8 1

Table 3: Toy example: carrier capacity

Before Alliance
carrier 1 carrier 2

vessel type 1 0 8
vessel type 2 8 0

After Alliance
carrier 1 carrier 2

vessel type 1 4 4
vessel type 2 4 4

As we can see from Table 4, after carrier 1 and 2 formed alliance, the price in both market

decreased and the profit for both carrier increased. The change is from the reallocation of

vessel to the market where it’s most productive. As we can see from Table 5, before the

strategic alliance, both carrier are not utilizing their full capacity because of the inefficient

high cost of vessel type 1 in market 1 and vessel type 2 in market 2. After the alliance,

however, both carriers would be able to utilize all of their capacity, which increase the total

quantity supplied to each market, bringing down price while increasing their profit. This

simple toy example uncovered that the efficiency gain of strategic alliance mostly come from

the reallocation of productive asset to the right market, which will increase the capacity

utilization rate and bring down the price. This efficiency gain will be more nuanced if

carriers are closer to their capacity constraint.
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Table 4: Toy example: price and profit

Price
market 1 market 2

before alliance 1.543 1.543
after alliance 1.402 1.402

Profit
carrier 1 carrier 2

before alliance 4.696 4.696
after alliance 4.816 4.816

Table 5: Toy example: change in quantity

carrier 1
market 1 market 2

vessel type 1 0 0
vessel type 2 4.121 → 4 3.011→ 4

carrier 2
market 1 market 2

vessel type 1 3.011→ 4 4.121→ 4
vessel type 2 0 0

4 Estimation and Calibration

4.1 Demand estimation

Given our log-linear demand system, the specification we use is the following:

lnQodt = −σ lnPodt + γot + γdt + γod + εodt (9)

where o, d, t represent origin, destination, and month, respectively. Qodt denotes the TEU

volume on tradelane od at time t, and Podt represents the per-TEU container freight price.

We include fixed effects for origin-time (γot), destination-time (γdt), and origin-destination

pairs (γod). However, there exists an issue of price endogeneity, as certain origin-destination-

time-specific factors in εodt may simultaneously influence both freight price Podt and container

volume Qodt. To address this, we employ an instrumental variable framework.
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In late December 2023, the Houthi group began attacking ships passing through the

Suez Canal, prompting carriers to gradually divert their vessels to the Cape of Good Hope

(see Figure 7). This diversion significantly increased shipping prices on origin-destination

routes previously reliant on the Suez Canal (see Figure 8 for a comparison of price dynamics

between routes affected and unaffected by the attack). Leveraging proprietary monthly

data on container trade volumes and prices across 22 origin-destination pairs from CTS, we

observe substantial increases in freight prices on the affected routes. To address the price

endogeneity issue, we use the recent Red Sea Crisis as a supply-side instrument for price:

lnPodt = [o-d route is affected at t] + γot + γdt + γod + 󰂃odt (10)

The identification of our demand estimation relies on the time-series and cross-sectional

variations across the 22 main trading routes in our data, under the assumption of constant

price elasticity of demand.

We present our demand estimation results in Table ??. Our analysis estimates the price

elasticity of container shipping demand to be -1.22, meaning a 10% increase in freight prices

would result in a 12.2% decline in total volume, on average.7 This elasticity is relatively low

compared to estimates in the existing literature. For instance, Kalouptsidi (2014) used ship

size and age as instruments for price and estimated the demand elasticity for bulk shipping at

-6.17. Similarly, Jeon (2022) applied a comparable strategy and estimated container shipping

demand elasticity at -3.89. Wong (2022) employed the round-trip effect as an instrument

and found an elasticity of -3. Asturias (2020) used population as an instrument, estimating

an elasticity of -5. More recently, Otani (2024) employed a similar approach to Jeon (2022)

and estimated an elasticity of -0.89 for the 1966–1990 period, attributing this low value to

the limited availability of alternative transportation methods during that era.

Our elasticity estimate is also on the lower end compared to these studies. One pos-

7For comparison, we also show the results of a hedonic price regression in column (3) in Table ??. As
we can see from the results, the price-elasticity will not be significantly from 0 if we do not employ our
instrumental variable technics.
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Figure 7: Red Sea Crisis

sible explanation is that our estimate reflects short-run demand elasticity, where the lack

of alternative transportation modes constrains substitution. When combined with additive

shipping costs, our results align with a trade elasticity in the range of 7–8. With estimted

demand elasticity σ, we can then estimate the demand shifter Dodt.

4.2 Cost estimation

To estimate the cost function, we rely on firms’ best response functions in their profit opti-

mization problems. Ideally, a full-solution approach would allow us to solve for the equilib-

rium given an initial guess of the cost function parameters. However, due to the presence

of multiple equilibria in our model, developing a robust and stable estimation strategy is
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Figure 8: Shipping price for routes affected and not affected by the Houthi’s attack

Table 6: Demand Estimation

IV IV OLS

Stage 1 Stage 2

lnPodt lnQodt lnQodt

disruption dummy 0.120∗

(0.059)

Podt −1.183∗∗ −0.140
(0.558) (0.128)

Obs 88 88 88
origin × month X X X
origin × destination X X X
destination × month X X X
Adjusted R2 0.849 0.998 0.996
F-stat 8.74 - -

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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challenging.

Instead, we estimate the cost function by solving a single firm’s optimization problem

while keeping its competitors’ strategies fixed at their observed values in the data. Specifi-

cally, we hold other carriers’ supplied quantities at their observed levels and solve the opti-

mization problem in Equation 7, given an initial guess for the marginal cost parameters.

The variable cost of operating a vessel of size φ by carrier i in market m at time t is

specified as:

log(cimt(φ)) = γi + γmt + cm(φ) (11)

where:

• γi is a time-invariant carrier fixed effect.

• γmt is a market-month fixed effect capturing time-specific supply-side factors.

• cm(φ) represents the market- and ship-size-specific component of cost, capturing the

economies or diseconomies of scale of vessel size across markets.

This cost component is summarized in the following matrix:

CCC
|Φ|×|M|

=

󰀵

󰀹󰀹󰀹󰀹󰀷

cm1(φ1) . . . cm|M|(φ1)

...
. . .

...

cm1(φ|Φ|) . . . cm|M|(φ|Φ|)

󰀶

󰀺󰀺󰀺󰀺󰀸
(12)

For each guess of the cost matrix CCC, we solve the following optimization problem for

carrier i:

Q̂̂Q̂Qi∗(CCC) = argmax
QQQi

󰀣
󰁛

m∈M

Pm(Q
i
m, Q

−i,data
m )Qi

m

󰀤
− TV C i(CCC) (13)

s.t. QQQi111 ≤ κκκi(Φi)
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where Q−i,data
m are the observed quantities of other carriers in the data, and Q̂̂Q̂Qi∗(CCC)

represents the optimized quantities for carrier i given an initial guess of the cost parameters

CCC.

The estimated cost matrix Ĉ̂ĈC is then obtained by minimizing the sum of squared devia-

tions between the observed and predicted quantities:

Ĉ̂ĈC = argmin
CCC

󰁛

i∈I

(Q̂̂Q̂Qi∗(CCC)−QQQi,data)2 (14)

Given the high dimensionality of the cost parameter space, we use a reduced-form re-

gression to obtain initial parameter estimates, improving the efficiency of our estimation.

Further details are provided in Appendix C.2.

Figure 9 presents the estimated variable costs by vessel size across markets. In the Far-

East-West-Bound markets (ASIA-MED, NEUR), the economies of scale for vessel size are

pronounced. In contrast, the estimated variable cost follows a U-shaped pattern in trans-

Pacific markets, where vessel size initially reduces costs but reaches an optimal threshold

beyond which costs increase. Only smaller vessels operate efficiently in trans-Atlantic routes.

This estimated cost structure is consistent with the observed vessel size distribution across

markets in the data.

4.3 Model Fit

To assess how well our model fits the data, we solve for the equilibrium using the estimated

demand and cost parameters. Figure 10 compares the model-generated quantities of each

vessel size supplied to each market by each carrier against the observed quantities in the data.

Overall, the model’s predictions align well with the data, but it performs less accurately when

predicting smaller quantities. This discrepancy is primarily due to the relatively coarse vessel

size grid (four categories) used in the estimation. Future work will refine the grid size to

improve model accuracy.
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Figure 9: Estimated normalized cost over vessel size

5 Simulation and Counterfactual Studies

In this counterfactual analysis, we investigate the incentives behind the formation and disso-

lution of global strategic alliances and their welfare implications. Specifically, we analyze the

creation of the 2M Alliance in the second half of 2015 and its announced breakup in 2023.

Using our estimated model, we simulate alternative market equilibria, examining how the

shipping industry would have evolved if the alliance had never formed or if its dissolution

had not occurred. This allows us to quantify the motivations of Maersk and MSC for enter-

ing and exiting the alliance and assess the resulting impact on freight prices and consumer

welfare.

To better understand these effects, we decompose the incentives and welfare impacts into

two key components: supply-side efficiency gains from vessel reallocation and demand-side

market power effects. We further explore how shifts in comparative advantages among al-

liance members and changes in aggregate demand influenced both the formation and breakup

of the 2M Alliance.
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Figure 10: Estimated normalized cost over vessel size

Finally, we summarize the key insights from our counterfactual analysis and discuss their

policy implications, offering guidance on the stability and regulatory considerations of global

strategic alliances.

5.1 The Formation of the 2M Alliance

As shown in the stylized facts section, Maersk and MSC reallocated their vessels across

different markets after forming the 2M Alliance in February 2015. To assess the impact of

this alliance, we simulate the 2016 market equilibrium assuming the 2M Alliance was never

formed and compare it to the observed equilibrium.

Profit Impact: Efficiency vs. Consolidation Effects Table 7 presents the change

in profits due to the alliance. We find that Maersk and MSC’s joint variable profit increases

by 0.8 billion USD in 2016 when the 2M Alliance is in place, highlighting their incentive to

cooperate. To isolate the sources of profit gain, we conduct a counterfactual scenario where

Maersk and MSC pool their vessels but continue competing on the demand side. The lower
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Table 7: Change in Carrier Profits (Billion USD) in 2016 without the 2M Alliance

With 2M Alliance

Maersk+MSC CKYHE G6 O3
0.80 1.38 1.51 0.82

2M Alliance (Supply Coordination Only)

Maersk MSC CKYHE G6 O3
0.25 0.03 -0.20 -0.25 -0.11

Note: This table presents the change in profits compared to a baseline scenario where the
2M Alliance was never formed. The top panel assumes Maersk and MSC coordinate only on
capacity, while the bottom panel treats the alliance as equivalent to a merger.

panel of Table 7 shows that Maersk’s profit increases by 0.25 Billion USD, while MSC’s

profit rises by 0.03 billion USD under supply coordination. This implies that the increase in

market power contributes to 0.52 Billion USD increase in Maersk’s and MSC’s joint profit,

more than those of efficiency gain.

The profit change of competing alliances differ under different assumption of the market

conduct of Maersk and MSC. Under the assumption that Maersk and MSC are competing

with each other with only supply side coordination, the formation of the alliance leads to

significant profit reductions for competing alliances, including CKYHE, G6, and O3. This

is because the 2M Alliance reallocate vessels owned by Maersk and MSC in a more efficient

way, leading to the increase in supplied quantities by the 2 carriers which steals business from

other alliances/carriers. However, under the assumption that the 2M alliance is equivalent

to a full merger, the profit of competing alliance will increase as the 2M will reduce their

quantities supplied across the market. This implies the importance to gauge the market

conduct between

The fact that these figures closely match the full-merger scenario suggests that almost

all profit gains arise from efficiency improvements, with minimal consolidation effects. To

further investigate the efficiency gains, Table 8 presents changes in vessel allocations after

the alliance’s formation.

The results indicate that Neo-Panamax vessels were relocated from Asia-NAWC to Asia-
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Table 8: Change in Quantities for 2M (106 TEUs)

Consolidation + Supply coordination effect
Vessel Size Asia-Med Asia-NAEC Asia-NAWC Asia-NEUR NEUR-NAEC
Panamax (<5100 TEU) 0.00 0.00 0.00 -0.31 -0.41
Post-Panamax (5101-10000 TEU) 0.00 0.46 -0.46 0.00 0.00
Neo-Panamax (10000-14500 TEU) -0.22 0.00 0.41 -0.19 0.00
Ultra Large (>14500 TEU) 0.00 0.00 0.00 0.00 0.00

Supply coordination effect
Vessel Size Asia-Med Asia-NAEC Asia-NAWC Asia-NEUR NEUR-NAEC
Panamax (<5100 TEU) 0.00 0.00 0.00 0.01 -0.01
Post-Panamax (5101-10000 TEU) 0.00 0.13 -0.13 0.00 0.00
Neo-Panamax (10000-14500 TEU) -0.05 0.00 0.15 -0.08 0.00
Ultra Large (>14500 TEU) 0.00 0.00 0.00 0.00 0.00

Note: This table presents the change in vessel allocation across trade routes after the 2M
Alliance was formed.

NAEC and Asia-MED, leading to a reallocation of Panamax vessels to the Asia-NAEC and

NEUR-NAEC markets. These findings align with our vessel allocation observations in Figure

on 2M vessel allocation.

5.1.1 Consumer Welfare Gains from the 2M Alliance

We also calculate changes in consumer surplus, summarized in Table 9. The total consumer

surplus increases by 20.63 billion USD due to the alliance, primarily driven by improved

vessel reallocation in Asia-NAEC, Asia-NAWC, and NEUR-NAEC. The formation of the

2M Alliance not only increased Maersk and MSC’s profits through vessel reallocation, but

also significantly improved consumer welfare, particularly in markets where vessel sizes were

previously allocated inefficiently.

5.2 The Breakup of the 2M Alliance

In January 2023, Maersk and MSC announced that the 2M Alliance would be dissolved by

January 2025. According to industry reports,8 the decision reflects a strategic shift, allowing

both companies to pursue their individual business models. Maersk has been expanding its

integrated logistics services, transitioning into an end-to-end supply chain provider, while

8See this link.
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Table 9: 2M Alliance: Change in Consumer Surplus (Billion USD) in 2016

With 2M Alliance

Asia-Med Asia-NAEC Asia-NAWC Asia-NEUR NEUR-NAEC Total
-0.69 1.98 -1.28 -2.99 -3.06 -6.03

2M Alliance (Supply Coordination Only)

Asia-Med Asia-NAEC Asia-NAWC Asia-NEUR NEUR-NAEC Total
-0.32 0.82 0.37 -0.52 -0.06 0.30

Note: The top panel assumes Maersk and MSC coordinate only on capacity, while the bottom
panel assumes full cooperation as a merger.

MSC has focused on growing its shipping fleet, becoming the world’s largest container carrier

by capacity.

5.2.1 The Role of Capacity Asymmetry

As shown in Figure 11, MSC’s capacity has grown significantly faster than Maersk’s. Since

the formation of the 2M Alliance, MSC’s contributed capacity share within the alliance has

increased from 46 percent to 52 percent. This growing asymmetry could destabilize the

alliance over time, making cooperation less sustainable.

To evaluate the profitability of maintaining the alliance, we compare the 2023 equilibrium

outcomes under two scenarios: (1) the 2M Alliance remains intact, and (2) Maersk and MSC

operate independently. The upper panel of Table 10 shows that if Maersk and MSC dissolve

the alliance, their joint profit increases by 1.82 billion USD in 2023. This suggests that, even

with potential direct transfer, the alliance is no longer sustainable.

The lower panel of Table 10 further breaks down the profit redistribution, showing that

MSC gains the most from the breakup (1.74 billion USD). Additionally, the dissolution

negatively impacts the profits of other alliances and carriers, as MSC’s increased market

supply intensifies competition.
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Figure 11: Capacity comparison between Maersk and MSC. (2016 vs 2023)

5.2.2 Consumer Surplus Effects of the Breakup

Table 11 presents the consumer surplus impact of the 2M Alliance breakup in 2023. We find

that the Asia-NAEC market benefits the most, with a 6.44 billion USD increase in consumer

surplus. The Asia-NAWC market also sees a 0.8 billion USD increase in consumer surplus.

However, this consumer surplus gain arises solely from increased market competition,

rather than from improved supply-side efficiency. This follows from our assumption that the

2M Alliance functioned similarly to a temporary merger.

As shown in Table ?? in Appendix D, if we assume that the 2M Alliance cooperated only

on vessel deployment and not on pricing, consumer surplus would remain unchanged. This

suggests that the increase in consumer welfare is driven purely by competition rather than

by efficiency gains from fleet reallocation.
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Table 10: 2M Alliance: Change in Carrier Profits (Billion USD) in 2023 Breakup

2M Alliance Breakup
Maersk + MSC Ocean Alliance THE Alliance

0.57 -2.24 -1.27

2M Alliance Breakup (supply coordination)
Maersk MSC Ocean Alliance THE Alliance
-1.07 1.07 -0.03 -0.02

Note: This table presents the change in profits for carriers/alliance if 2M is broken up in 2023.
The top panel is the change in profit. The bottom panel compares the profits of Maersk and
MSC before and after the breakup in 2023. We assume the profits are split according to the
capacity Maersk and MSC contributed to the 2M Alliance.

Table 11: 2M Alliance: Change in Consumer Surplus (Billion USD) in 2023 Breakup

2M Breakup

Asia-Med Asia-NAEC Asia-NAWC Asia-NEUR NEUR-NAEC Total
-0.29 5.28 -0.70 0.30 0.11 4.70

2M Breakup (supply coordination only)

Asia-Med Asia-NAEC Asia-NAWC Asia-NEUR NEUR-NAEC Total
0.00 0.31 -0.23 0.00 0.00 0.08

Note: This table presents the changes in consumer surplus if they formed one global alliance
by sharing their vessels together. We are assuming they divide the total capacity based on the
capacity they are contributing to this global alliance.

5.2.3 Comparing the Welfare Impact of Formation and Breakup

The effects of the formation (2015) and dissolution (2023) of the 2M Alliance on consumer

welfare follow distinct mechanisms. When Maersk and MSC formed the 2M Alliance in 2015,

the efficiency gains from vessel reallocation outweighed potential anti-competitive effects,

leading to higher consumer welfare. In contrast, the dissolution of the alliance in 2023

improves consumer welfare purely through heightened competition, with minimal efficiency

effects.

These findings underscore the dual role of strategic alliances in shaping market out-

comes—balancing efficiency improvements against competitive distortions. Our results pro-

vide a quantitative framework to assess the long-term viability and regulatory implications

of such alliances in concentrated markets.
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5.3 Impact of Comparative Advantage on Alliance Incentives and

Welfare

In this section, we examine how differences in comparative advantage between carriers influ-

ence the incentive to form an alliance and their potential welfare impact. As shown in Figure

11, the fleet compositions of Maersk and MSC became more similar over time, coinciding

with the announcement of the 2M Alliance breakup in 2023.

To facilitate an apples-to-apples comparison, we construct a hypothetical fleet for Maersk

and MSC in 2016. In this scenario, we preserve their total fleet capacity as observed in

the data but adjust the distribution: Maersk’s fleet composition is skewed towards smaller

Panamax and Post-Panamax vessels, while MSC’s fleet has a higher proportion of vessels

larger than 10,000 TEU. A summary of this fleet adjustment is presented in Figure 12.

Figure 12: Capacity comparison between observed and hypothetical fleet composition

Figure 13 illustrates the change in joint profit (in billion USD, 2016) for Maersk and MSC

under two different fleet compositions: i) The observed fleet in the data, ii) The hypothetical

fleet with greater differences in vessel composition.

Compared to the observed fleet, a more divergent fleet composition (representing greater
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comparative advantage across markets) results in a larger share of joint profit gains coming

from supply-side efficiency, while the gains from market power remain relatively unchanged.

Figure 13: Change in joint profit of the 2M Alliance under different fleet compositions

The impact on consumer surplus, however, is less straightforward. As shown in the

lower panel of Table 13, consumer surplus declines when Maersk and MSC exhibit greater

comparative advantage. This suggests that the strategic responses of other carriers and

alliances may offset the expected positive impact on consumer welfare. The redistribution

of consumer surplus across markets is also more pronounced in this case compared to the

observed fleet composition. This finding underscores the complexity of evaluating the welfare

effects of strategic alliances.

5.4 Aggregate Demand Change

The container shipping industry experiences highly volatile aggregate demand, making it

important to examine how the stability of strategic alliances evolves over the boom-bust

cycle. Using 2016 data, we compute the equilibrium under a scenario where aggregate

demand is reduced by 20 percent.

As shown in Figure 14, the efficiency gains from the 2M Alliance disappear when aggre-
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Table 12: Change in Carrier Profits (Billion USD) in 2016 with a More Different Fleet

With 2M Alliance

Maersk+MSC CKYHE G6 O3
2.97 1.82 1.08 0.84

2M Alliance (Supply Coordination Only)

Maersk MSC CKYHE G6 O3
2.64 -0.19 0.24 -0.67 -0.09

Note: This table presents the change in profits compared to a baseline scenario where the
2M Alliance was never formed. The top panel assumes Maersk and MSC coordinate only on
capacity, while the bottom panel treats the alliance as equivalent to a merger.

Table 13: 2M Alliance: Change in Consumer Surplus (Billion USD) in 2016 with Different Fleets

With 2M Alliance

Asia-Med Asia-NAEC Asia-NAWC Asia-NEUR NEUR-NAEC Total
-1.54 3.19 -3.22 -5.74 0.17 -7.14

2M Alliance (Supply Coordination Only)

Asia-Med Asia-NAEC Asia-NAWC Asia-NEUR NEUR-NAEC Total
-1.17 2.03 -1.57 -3.27 3.17 -0.81

Note: The top panel assumes Maersk and MSC coordinate only on capacity, while the bottom
panel assumes full cooperation as a merger.
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gate demand declines by 20 percent, while the profit gain from increased market power more

than double in the low-demand scenario. This result aligns with findings in the literature on

tacit collusion and suggests that alliance formation proposals between similar carriers during

periods of low demand should be subject to heightened scrutiny.9

Figure 14: Change in joint profit of the 2M Alliance under different aggregate demand

5.5 Counterfactual Summary and Policy Implications

This section summarizes key policy insights from our counterfactual analysis.

Comparative Advantage Comparative advantage across carriers plays a crucial role

in determining both the formation and dissolution of global strategic alliances. Larger dif-

ferences in market presence and fleet composition create stronger incentives for alliance

formation.

For example, comparing Maersk’s and MSC’s fleet compositions in 2015 and 2023, we

observe that they had more distinct vessel size distributions when forming the alliance in

2015. In our counterfactual experiment, where we further polarized fleet compositions, the

supply-side efficiency gains increased even more.

9For detailed results on the carrier profit, please refer to Table 15. And for detailed results on the
consumer surplus impact, please refer to Table 16.

35



The extent of comparative advantage also influences the nature of alliance incentives—as

differences grow, the gains from supply-side efficiency become more dominant. For policy-

makers, this underscores the importance of evaluating the degree of comparative advantage

when assessing alliance formation proposals. If alliance members have similar vessel size

distributions, the argument that alliances enhance supply-side efficiency weakens.

Market Conduct Understanding market conduct within alliances is crucial for eval-

uating their overall welfare impact. If alliance members coordinate as a single entity on

the demand side, our counterfactual analysis consistently shows that market power effects

dominate any efficiency gains.

This suggests that policymakers should closely monitor alliance members’ competitive

behavior, as market power changes can have significant welfare implications. Meanwhile, the

welfare effects of supply-side efficiency gains are more nuanced. Other market participants

may strategically adjust their supply in response to a new alliance, dampening the expected

consumer welfare gains. For instance, the formation of the 2M Alliance may have increased

supply in previously underrepresented markets, but other carriers might reduce their output

in response, mitigating the positive welfare impact.

Mergers vs. Alliances Unlike horizontal mergers, strategic alliances have a greater

tendency to dissolve, which can be beneficial for consumer welfare. Our counterfactual

analysis of the 2M Alliance breakup illustrates this point: As MSC’s fleet surpassed Maersk’s

and their vessel compositions became more similar, the incentive to remain in an alliance

declined. This breakup ultimately benefited consumer surplus, as increased competition

offset any efficiency losses.

This highlights a key distinction between alliances and mergers—alliances are inherently

less stable and may naturally break apart under changing market conditions. Policymak-

ers should continuously monitor alliance stability to fully understand its long-term welfare

effects.

Aggregate Demand The formation incentives and welfare effects of strategic alliances
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also depend heavily on aggregate demand conditions. Consistent with the literature, we

find that alliances are more stable when demand is low. However, the underlying mecha-

nisms differ. When demand is low, alliance formation is mainly driven by market power

considerations. When demand is high, supply-side efficiency gains become more significant.

This reveals an important distinction: aggregate demand has opposite effects on market

power incentives and efficiency gains in strategic alliances. Understanding this relationship

is essential for designing effective regulatory policies.

6 Conclusion

This study provides an in-depth analysis of the economic incentives, efficiency gains, and

competitive effects of global strategic alliances in the container shipping industry. By focus-

ing on the 2M Alliance, we demonstrate that vessel reallocation across trade routes serves

as a key driver of efficiency gains, leading to lower operational costs and enhanced capacity

utilization. However, these benefits are counterbalanced by concerns over market power, as

alliances may reduce competition and increase prices in certain markets.

Our counterfactual analysis highlights that alliances are more likely to form when mem-

bers possess distinct fleet compositions, allowing them to leverage comparative advantages.

Conversely, as fleet compositions converge, the rationale for maintaining an alliance weakens,

leading to potential dissolution. The breakup of the 2M Alliance in 2023 serves as a case

study in this dynamic, where MSC’s rapid fleet expansion and shifting strategic priorities

reduced the mutual benefits of continued cooperation. The findings also underscore the im-

portance of aggregate demand conditions in shaping alliance stability. When demand is low,

alliances are more likely to form as firms seek to consolidate market power. In contrast,

during periods of high demand, efficiency considerations dominate alliance incentives. These

insights provide valuable guidance for policymakers, who must weigh the trade-offs between

efficiency gains and anti-competitive risks when evaluating alliance agreements.

Finally, this study contributes to the broader literature on horizontal mergers and reallo-
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cation by illustrating how strategic alliances differ from full-scale mergers. Unlike mergers,

alliances are inherently more flexible and subject to dissolution, which may mitigate long-

term antitrust concerns. Nevertheless, regulators must remain vigilant in monitoring alliance

behavior, particularly in concentrated industries like container shipping, where even tempo-

rary supply-side coordination can have significant market implications.

Future research could explore the role of technological advancements and digitalization in

shaping alliance incentives and efficiency gains. Additionally, incorporating firm-level data on

pricing strategies and contract structures could provide deeper insights into the competitive

dynamics of global shipping alliances. As the industry continues to evolve, understanding

the interplay between cooperation and competition will remain critical for both industry

participants and policymakers alike.
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A More Details on Stylized Facts

A.1 Micro-foundation of (dis-)economies of scale at vessel level

According to the literature in the maritime economics and maritime engineering, the total

variable cost of container shipping could be divided into two components: i) cost at port

and ii) cost at sea. Daily operating cost is the main component of the cost at port, and the

total cost at port depends on the time spent at port. Given the container processing rate r

at port, the time at port could approximately be modeled as

Tport =
2φ

r
(15)

where φ is the vessel size, the multiplier 2 captures the time of unloading and loading the

containers.10 However, the interpretation of the container handling rate r could also be the

processing rate of ships at certain infrastructure chokehold. For example, the handling speed

of larger vessel will be longer than those of smaller vessels at canals.

If we further assuming the daily operating cost of ship size φ is:

Cop = c1φ
β1 (16)

where c1 and β1 are the parameters governing the level and economies of scale for the

operating cost of container ships. The cost at port would be

Cport = TportCop =
2c1
r
φ1+β1 (17)

The cost at sea has two components: daily operating cost and daily bunker cost. If we

10To be more specific, φ should be call size, rather than vessel size, but an empirical work by McKinsey&Co
shows a strong positive correlation between call size and vessel size.
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assume the bunker cost of the ship is

Cfuel = c2fφ
β2 (18)

where c2 governs the efficiency of propulsion, f is the bunker price and β2 governs the

economies of scale in propulsion efficiency. Then the cost at sea is

Csea =
d

s
(Cfuel + Cop) =

d

s
(fc2φ

β2 + c1φ
β1) (19)

where d is the distance of a specific route and s is the sailing speed. So the per-TEU11

marginal cost of operating a ship with size φ is

c(φ) =
Cport + Csea

φ
=

2c1
r
φβ1

󰁿 󰁾󰁽 󰂀
Diseconomies of scale

+
d

s
(fc2φ

β2−1 + c1φ
β1−1)

󰁿 󰁾󰁽 󰂀
Economies of scale

(20)

The marginal cost of ship with size φ has two components: i) diseconomies of scale due

to longer handling time at port and other maritime infrastructure and ii) economies of scale

due to saving on operating and bunker cost at sea.

A.1.1 Parametrization of vessel-level (dis-)economies of scale

To simplify our setup and make it easier to bring the model to the data, we formulate our

marginal cost function as

log(cm(φ)) = δm + h(φ; γ1, γ2, φ̄m) · (log(φ)− log(φ̄m)) (21)

11TEU is equivalent to a 20-feet container, which is used as an standardized unit in container shipping.
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where γm is the market/trade lane level fixed effect of marginal cost12. h(·) is a sigmoid-type

of function:

h(φ; γ1, γ2, φ̄m) = −γ1 +
γ1 + γ2

1 + exp(−(φ− φ̄m))
(22)

where φ̄m is the optimal vessel size in market m. When φ < φ̄m, h(φ) ≈ −γ1, and when

φ > φ̄m, h(φ) ≈ γ2. Therefore, γ1 governs the extent of economies of scale due to ship

size while γ2 governs the diseconomies of scale. The optimal vessel size φ̄m represents the

handling ability of maritime infrastructure. As Figure ?? shows, the marginal cost exhibits

economies of scale for vessel size before turning into the region of diseconomies of scale at

the optimal vessel size in market 1 (8000 TEU) and market 2 (16000 TEU) respectively.

This corresponds to what we observe in our empirical section, where the marginal cost index

exhibits a u-shape for Asia-NAWC lanes but exhibits mostly economies of scale for Asia-

NEUR and Asia-Med lanes as the ports in the latter lanes are more productive in handling

larger vessels.

B More Details On Model

B.1 Solving Equilibrium

We use the Algorithm 1 to solve the equilibrium.

C More Details On Estimation

C.1 CES Demand + Cournot Oligopoly

For simplicity, we start with the calibration of CES Demand and Cournot oligopoly setup.

Because we already use the Flexport data to estimate the trade elasticity with regard to

freight cost of rought −3, so we could directly use the system of non-linear equations in ?

to directly calibrate the marginal cost.

12We will make this market-time specific fixed effect when bringing the model to the data.
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Algorithm 1 Fixed Point Algorithm for Solving Equilibrium

1: Input: Initial guess of quantities Q(0), tolerance 󰂃, maximum iterations N
2: Output: Equilibrium quantities Q∗

3: Initialize iteration counter k ← 0
4: Initialize Q(0) arbitrarily
5: repeat
6: for each firm i ∈ I do
7: Compute best response Q

(k+1)
i given competitors’ strategies Q

(k)
−i

8: end for
9: Compute distance d ← 󰀂Q(k+1) −Q(k)󰀂

10: Update iteration counter: k ← k + 1
11: until d < 󰂃 or k ≥ N
12: Return equilibrium quantities Q∗ = Q(k)

Assume a representative agent in market m at time t has a CES utility function

Qmt = [
󰁛

k∈Kmt

qmt(k)
σ−1
σ ]

σ
σ−1

where qmt(k) is carrier k’s quantity, and Kmt is the set of carriers in market m at time t.

Assume carriers engage in Cournot oligopoly competition, their profit function is

πmt(k) = [pmt(k)− cmt(k)]qmt(k)− Fmt(k)

The FOC is a system of non-linear equations

σ − 1

σ

Imt · qmt(k)
− 1

σ

(
󰁓

l∈Kmt
qmt(l)

σ−1
σ )2

[
󰁛

l∈Kmt,l ∕=k

qmt(l)
σ−1
σ ] = cmt(k) (23)

We could solve for the quantity vector {qmt(k)}k∈Kmt .

Since we also observe aggregate price data. The price (determined in equilibrium) is

pmt(k) =
εmt(k)

εmt(k)− 1
cmt(k)
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where the price elasticity is a function of k’s market share smt(k):

εmt(k) = [
1

σ
(1− smt(k)) + smt(k)]

−1

To recover price from quantity

pmt(k) = Imt ·
qmt(k)

− 1
σ

󰁓
l∈Kmt

qmt(l)
σ−1
σ

and price index is

Pmt = [
󰁛

k∈Kmt

pmt(k)
1−σ]

1
1−σ = Imt[

󰁛

k∈Kmt

qmt(k)
σ−1
σ

(
󰁓

l∈Kmt
qmt(l)

σ−1
σ )1−σ

]
1

1−σ (24)

We will use Equation 24 to recover the market specific demand Imt. Then we plug demand

shifters into Equation 23 to recover the marginal cost.

For the benchmark estimation, we assume the carriers in one alliance is similar to a

merger, and we treat the non-allianced carriers as a single oligopoly carrier. We will try to

ease this assumptions later on in our sensitivity analysis.

C.2 Determining the initial parameters value in cost estimation

To speed up the cost estimation algorithm, we use a reduced form regression of implied cost

on average vessel size to set the initial starting point for our cost parameter estimation. A

simpler and more tractable way of estimating the variable cost would be to assume each

carrier has a representative vessel size in each market for each month, which is the capacity-

weighted average vessel size:

φi
m =

󰁓
φ∈Φi

m
φκi

m(φ)󰁓
φ∈Φi

m
κi
m(φ)

(25)

This indicates that the FOC for each carrier in each market is satisfying the following
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condition: Then the F.O.C. of the alliance i is

Pmt(Qmt) + P
′

mt(Qmt)q
i
mt = (1− simt

σ
)Amt(Qmt)

−σ = (1− simt

σ
)Pmt = ĉimt (26)

where c̃imt is the effective marginal cost of alliance i in market m at time t. And simt =
qimt

Qmt
is

the market share of carrier i in market m at time t. And σ is the price elasticity of shipping

demand. This gives us an expression to back out effective marginal cost as a function of

market price and each alliance’s market share and the price elasticity of demand.

We further parametrize the implied marginal cost into the two components:

log(ĉimt) = γmt + log(c̃imt) ≡ γmt + h(m,φi
m) + εimt (27)

where we regress the implied variable cost on a market-time fixed effect to extract log(c̃imt) ≡

h(m,φi
m) + εimt. Then we try to estimate the function h(·) using both a non-parametric and

a hyperbolic function approach to uncover the extent of (dis)economies of scale of vessel size

in my different markets. As we can see from Figure 16, the estimated cost is following a

U-shape over vessel size implying a transition from economies of scale to diseconomies of

scale also predicted in our Appendix B discussing the source of (dis)economies of scale.

To quantify the extent of economies of scale, we run the following parametric regression

of the calibrated cost (ĉimt) on the carrier-market specific weighted average vessel size (φi
m)

log(ĉimt) = γmt + βm log(φi
mt) + εimt (28)

The regression result is summarized in Table 14 in Appendix C.13 fr a 10% increase in the

average vessel size, the cost of transporting a container on Asia-Europe routes will decrease

by 25% on average, and the reduction in cost will be 20% for Asia-Mediterranean routes.

The economies of scale in Asia-North America west coast and east coast is not significantly

13For a comparison of our estimated economies of scale with those estimated in the literature, please refer
to Appendix C.
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Figure 16: Effective marginal cost versus average vessel size

from zero. However, this estimates mask the strong non-linearity (U-shape) especially for

Asia-North America west coast routes we saw in Figure 16 .

The case of Panama Canal expansion

The Panama Canal expansion project significantly enhanced the canal’s capacity by

allowing larger vessels to transit. Prior to the expansion, the canal accommodated only

Panamax ships with a maximum capacity of approximately 5,000 TEUs. The project, com-

pleted in mid-2016, added a third set of locks, widened and deepened navigation channels,

and upgraded infrastructure, enabling the passage of New Panamax (Neo-Panamax) ships

with capacities of up to 14,000 TEUs. This more than doubled the canal’s cargo capacity,

facilitating the use of larger and more efficient vessels on this critical maritime route.

We separate the time periods to be pre-enlargement and post-enlargement, and we plot

the estimated cost over vessel size for these two periods in Figure 17. Before the enlargement,

we saw the marginal cost follows a U-shape, and as the vessels approaches the capacity

upper limit of 5100 TEU, the implied marginal cost actually increases. However, after the
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Table 14: Cost Function Estimation Results

Dependent variable:

log(c)

(1) (2) (3)

φ: ASIA-MED 4.123∗∗∗ 5.161∗∗∗ −2.177
(0.677) (1.544) (2.177)

φ: ASIA-NAEC −1.475 3.988 −2.408
(1.089) (2.444) (2.948)

φ: ASIA-NAWC −12.513∗∗∗ −8.874∗∗ −1.204
(1.446) (3.756) (5.304)

φ: ASIA-NEUR 1.378∗∗ 4.299∗∗∗ 3.847∗∗

(0.674) (1.177) (1.618)

φ: NEUR-NAEC −6.414∗∗∗ −15.181∗∗∗ −20.080∗∗∗

(1.053) (2.493) (3.793)

φ2: ASIA-MED −0.237∗∗∗ −0.298∗∗∗ 0.113
(0.037) (0.085) (0.121)

φ2: ASIA-NAEC 0.082 −0.232∗ 0.133
(0.062) (0.139) (0.168)

φ2: ASIA-NAWC 0.701∗∗∗ 0.496∗∗ 0.062
(0.081) (0.209) (0.299)

φ2: ASIA-NEUR −0.085∗∗ −0.249∗∗∗ −0.222∗∗

(0.037) (0.064) (0.090)

φ2: NEUR-NAEC 0.382∗∗∗ 0.907∗∗∗ 1.184∗∗∗

(0.062) (0.148) (0.228)

Observations 2,693 2,693 2,693
R2 0.975 0.790 0.826
Adjusted R2 0.969 0.780 0.814
Residual Std. Error 0.072 (df = 2190) 0.192 (df = 2570) 0.176 (df = 2520)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 17: Change in Implied Marginal Cost Pre-/Post-Panama Expansion

expansion, the cost implies a significant economies of scale with respect to vessel size. This

change in the economies of scale due to maritime infrastructure improvements also caused

carriers to reallocate larger vessels to the Asia-North America East coast

D More Details on Counterfactual Exercise

Table 15: Change in Carrier Profits (Billion USD) in 2016 with 20% Lower Demand

With 2M Alliance

Maersk+MSC CKYHE G6 O3
1.13 2.69 0.96 0.70

2M Alliance (Supply Coordination Only)

Maersk MSC CKYHE G6 O3
0.06 -0.06 0.00 0.00 0.00

Note: This table presents the change in profits compared to a baseline scenario where the
2M Alliance was never formed. The top panel assumes Maersk and MSC coordinate only on
capacity, while the bottom panel treats the alliance as equivalent to a merger.
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Table 16: 2M Alliance: Change in Consumer Surplus (Billion USD) in 2016with 20% Lower Demand

With 2M Alliance

Asia-Med Asia-NAEC Asia-NAWC Asia-NEUR NEUR-NAEC Total
-2.43 5.55 -2.88 -5.12 -2.17 -7.05

2M Alliance (Supply Coordination Only)

Asia-Med Asia-NAEC Asia-NAWC Asia-NEUR NEUR-NAEC Total
0 0 0 0 0 0

Note: The top panel assumes Maersk and MSC coordinate only on capacity, while the bottom
panel assumes full cooperation as a merger.

50


