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Abstract

Technological innovation drives economic progress but can also lead to unintended
consequences, such as market over-consolidation. This paper examines the competitive
effects of technological advancement in the container shipping industry, focusing on the
relationship between vessel size and market structure, and its impact on welfare. Using
a dynamic oligopoly model and proprietary data, we quantify the economies of scale
associated with vessel size and explore how it interact with market competition and
investment behavior. We find that a 10% increase in vessel size reduces operational
costs by 3.4% but contributes to market concentration, potentially offsetting consumer
benefits. Counterfactual analysis suggests that the welfare-optimal vessel size is around
20,000 TEU under current demand level, as larger vessels risk over-consolidating the
market. Additionally, smaller innovation steps promote competition, while larger steps
drive consolidation. These findings highlight the need for policymakers to balance the
efficiency gains of technological advancements with their competitive impacts, partic-
ularly when designing infrastructure investments in industries with strong economies
of scale.
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1 Introduction

Technological innovation has long been a cornerstone of productivity growth and economic

progress, fundamentally reshaping industries and global markets over the past century. How-

ever, as technology continues to advance, it raises an important question: can innovation go

too far? While technological advancements often promise efficiency gains and lower costs,

they can also generate unintended consequences, such as market over-consolidation and re-

duced competition. These effects may undermine the very welfare benefits that innovation

is intended to deliver. Understanding and accurately accounting for the competitive effects

of technological innovation is therefore essential for policymakers seeking to balance the

trade-offs between efficiency, competition, and long-term economic welfare.

This paper examines the competitive effects of technological innovation in the container

shipping industry, with a focus on assessing whether the advancement of shipping technol-

ogy—particularly the trend toward larger vessels—has surpassed its welfare-optimal level.

One of the most significant technological advancements in container shipping over the past

few decades is the steady increase in vessel size, aimed at reducing transportation costs

through economies of scale.1 However, the growing prevalence of ultra-large container ships

has drawn criticism for its potential risks to maritime infrastructure and its role in exacer-

bating market concentration, as the industry has experienced substantial consolidation in

recent years.2

Specifically, this paper investigates the relationship between increasing vessel size and

1See Merk (2018), Imai et al. (2006), Haralambides (2019), Murray (2016), Yang et al. (2011), Veldman
(2011)

2The Dali incident and the Ever Given blockage highlight the growing risks that ultra-large container
vessels pose to critical maritime infrastructure. In March 2021, the Ever Given, a 400-meter-long, 20,000+
TEU container ship, ran aground in the Suez Canal, blocking one of the world’s most vital trade routes
for nearly a week. The disruption halted global trade, stranding over 400 vessels and causing billions in
economic losses. More recently, in March 2024, the Dali, a 10,000+ TEU vessel, lost power and collided
with the Francis Scott Key Bridge in Baltimore, Maryland, leading to the catastrophic collapse of the bridge
and severe disruptions to regional port operations. Both incidents underscore the infrastructure challenges
posed by the increasing size of container ships—larger vessels require more precise navigation, place greater
strain on port and canal infrastructure, and magnify the consequences of accidents, raising concerns about
the long-term sustainability of ever-growing ship sizes. There are also discussion of how large vessel has
facilitated the market consolidation in the container shipping industry. See also link.
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the consolidation of the container shipping market. It seeks to answer the central question:

how large is too large when the potential competitive effects of vessel size are considered?

While the pursuit of larger vessels may drive down freight costs through efficiency gains,

a more concentrated market structure could offset these benefits by pushing freight prices

back up. Furthermore, this study explores how industry equilibrium outcomes vary under

different technological frontiers (maximum vessel sizes) and innovation step sizes (the pace

at which carriers can upgrade their fleets). These questions are critical for understanding the

broader implications of technological innovation on competition and welfare in the container

shipping industry and beyond.

Our paper also contributes to the ongoing discussion on the returns to investment in mar-

itime infrastructure (see Brancaccio et al. (2024), Ganapati et al. (2024)). By incorporating

the effects of market structure and competition into the analysis of technological advance-

ments, we provide a more precise estimation of the potential welfare benefits of infrastructure

investments in a highly concentrated industry such as container shipping. This framework

enables a more accurate cost-benefit analysis, which is crucial for evaluating billion-dollar

infrastructure investment projects.3

We developed a structural, model-based empirical framework to estimate the demand and

cost structure of the container shipping industry. Specifically, we construct and estimate a

non-stationary dynamic oligopoly model with stochastically alternating moves, following the

approach of Igami and Uetake (2020). In the stage game, container carriers compete in a

Cournot fashion, with operating costs primarily determined by the average vessel size of

their fleet—larger vessels incur lower costs due to economies of scale.4

To estimate demand, we utilize proprietary monthly container trade volume and price

data from Container Trade Statistics, covering 22 major trade lanes to estimate a gravity-

3The Biden administration has enacted significant investments in transportation infrastructure, primarily
through the Bipartisan Infrastructure Law (BIL), also known as the Infrastructure Investment and Jobs Act,
signed into law in November 2021. This historic $1.2 trillion legislation represents the most substantial federal
investment in infrastructure in decades. $42 Billion is directed at modernizing airports and maritime ports.

4In this context, carriers refer to shipping companies, while shippers are customers of shipping services.
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style demand model. To address price endogeneity, we construct an instrumental variable

exploiting the re-routing of container ships from the Suez Canal to the Cape of Good Hope

following the Red Sea attacks by the Houthi group. Only some trade lanes are directly

affected by these attacks, resulting in an exogenous, supply-driven increase in shipping prices

for those routes. For cost estimation, we leverage the prediction that carriers with lower costs

tend to supply larger quantities, particularly during demand downturns. Using proprietary

capacity utilization data from Sea Intelligence, we estimate operational costs within the stage

game framework and infer the economies of scale associated with vessel size.

The dynamic game of investment, entry, and exit is modeled using a stochastic alternating-

move framework to represent a non-stationary dynamic oligopoly. In each period, Nature

selects a single carrier (the ”mover”) to make decisions regarding whether to upgrade their

average vessel size, remain idle, or exit the market. As mentioned in Igami and Uetake

(2020), this framework addresses the issue of multiple equilibria by transforming the prob-

lem into a single-agent dynamic discrete choice model for each period. Additionally, the

stochastic process of selecting movers mitigates concerns about first-mover advantages in-

herent in predetermined move orders. By employing a non-stationary equilibrium concept,

we substantially reduce computational complexity, as the model can be solved using back-

ward induction.

Due to the infrequent consolidation events in our dataset, we employ the method of sim-

ulated moments, focusing on the transition paths of key industry moments—specifically, the

number of carriers or alliances and the industry’s average vessel size—to estimate investment,

maintenance, and entry costs in the dynamic game. Finally, we conduct counterfactual anal-

yses by altering the maximum vessel size and innovation step size to evaluate the welfare

implications of the technology frontier and the speed of innovation.

We found significant economies of scale associated with vessel size. On average, a 10%

increase in vessel size reduces the average cost of operation by 3.4% on the Asia–Northern

Europe trade lane. This finding is consistent with the existing maritime economics litera-
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ture.5 The strong economies of scale create a substantial cost advantage for carriers with

larger average vessel sizes in their fleets, providing a strong business-stealing incentive for

carriers to invest in upgrading vessel size.

Our dynamic estimation reveals a nuanced and non-linear relationship between competi-

tion and innovation. The effect of competition on innovation differs for market leaders and

followers. Increased competition incentivizes leaders to innovate more due to the preemp-

tive business-stealing effect, as they aim to force laggard competitors out of the market. In

contrast, a more concentrated market motivates followers to innovate, as the potential profit

gains are larger. Additionally, our results show that the incentive to innovate is higher when

firms are more neck-and-neck, consistent with the central prediction of Aghion et al. (2005).

Furthermore, we find that the average incentive to innovate is higher for followers than for

leaders, reflecting the higher cost of pushing the technological frontier compared to catching

up or imitating.

Our counterfactual analysis addresses the welfare implications of the technology frontier

and innovation step size. Under current aggregate demand levels, we find that the optimal

shipping technology frontier lies at an average vessel size of approximately 20,000 TEU.

The current 24,000+ TEU maximum ship size risks over-consolidating the shipping market.

Increasing the average vessel size beyond 18,000 TEU contributes minimally to consumer

surplus, primarily shifting surplus from consumers/shippers to carriers. The optimal tech-

nology frontier is demand-dependent: the pro-competitive effects of technology dominate its

anti-competitive effects when demand is high, and the opposite holds true when demand

is low. This underscores the importance of incorporating demand forecasts into technol-

ogy and infrastructure investment policies when accounting for the competitive effects of

technological advancements.

Our simulation also sheds light on how innovation step size influences industry equilib-

rium. Even with the same potential technology frontier, different innovation step sizes can

5See Merk (2018), Imai et al. (2006), Haralambides (2019), Murray (2016), Yang et al. (2011), and
Veldman (2011).
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lead the industry to distinct long-run equilibria. Smaller step sizes reduce the incentive to

upgrade, resulting in a more competitive market with smaller vessels, whereas larger step

sizes drive greater consolidation, with remaining firms achieving the technology frontier.

To summarize, our counterfactual analysis provides three key policy lessons:

1. The design of an optimal technology frontier must balance the pro-competitive effects

of technological advancement with the anti-competitive effects of market consolidation,

particularly when technology exhibits strong economies of scale.

2. The optimal technology frontier is contingent on aggregate demand, making demand

forecasting a critical component of technology policy design.

3. Innovation step size play a crucial role in determining whether the potential technology

frontier can be achieved and at what cost.

These findings have significant implications for the container shipping industry. A key

motivation for port and canal infrastructure investments is to accommodate larger vessels,

thereby reducing transportation costs. However, our analysis indicates that such investments

could lead to market over-consolidation, offsetting the cost-reduction benefits of larger ves-

sels, particularly in the presence of significant economies of scale and high entry barriers.

This suggests that the benefits of transportation infrastructure investments may be overes-

timated if the competitive effects of technology are not considered.

Moreover, even if port and other transportation infrastructure are upgraded to accom-

modate larger vessels, whether carriers choose to invest in fleets to achieve the maximum

size depends on the speed at which they can upgrade their fleets. Therefore, policies and

regulations related to shipbuilding, investment, and financing must be coordinated with

infrastructure investment authorities to maximize welfare outcomes, especially when inno-

vation step size has a significant impact on industry dynamics.
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Related Literature

Our paper contributes to the literature on the relationship between competition and in-

novation. The seminal work of Schumpeter (1942) argues that under certain conditions,

increased competition may discourage innovation, a phenomenon known as the Schumpete-

rian effect. By incorporating both the Schumpeterian effect and the “escaping competition”

effect, Aghion et al. (2005) demonstrate an inverted-U relationship between innovation and

competition, where competition discourages laggard firms from innovating but encourages

neck-and-neck firms to do so.6

Several studies explore the relationship between competition and innovation in dynamic

settings, including Benkard (2004), Goettler and Gordon (2011), Kim (2013), Igami (2017),

Igami (2018) and Igami and Uetake (2020). Our paper is closest to Igami and Uetake (2020)

in terms of model structure and setting, as we adopt their stochastically alternating-move

game framework to construct our non-stationary dynamic oligopoly model.7 However, while

Igami and Uetake (2020) focus on optimal merger policies when both innovation and merg-

ers are endogenous, our paper examines policies influencing the trajectory of technological

development (e.g., the technology frontier and innovation step size) and their implications

for competition and welfare.8

Our work also closely relates to Marshall and Parra (2019), who highlight a complex and

potentially non-monotonic relationship between competition and innovation. They empha-

size that the relationship between the profit gap (between leaders and followers) and the

number of firms plays a critical role in determining the effect of competition on innovation.

6Our findings align with this framework, providing more detailed results from our structural empirical
model of the container shipping industry. Specifically, we find that market followers are significantly less
motivated to innovate in highly competitive markets, while the incentive to invest increases when firms
are closer to being neck-and-neck. However, we also show that market leaders have reduced incentives to
innovate in more concentrated markets, as their business-stealing incentives diminish when the probability
of driving smaller competitors out is low.

7Recent studies that also utilize this framework include Otani (2024) and Garg and Saxena (2023).
8Unlike a focus solely on competition authorities, we emphasize the broader policy implications for agen-

cies such as transportation authorities responsible for infrastructure investment or subsidies. This under-
scores the need for coordinated policy efforts across multiple agencies, including but not limited to trans-
portation and competition authorities.
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Consistent with their findings, we show empirically that the incentive to innovate is directly

linked to the business-stealing effect, which is influenced by the profit gap.9 In summary,

while much of the existing literature emphasizes the impact of competition on innovation, our

primary focus is on the competitive and welfare effects of different technological innovation

characteristics.

Our paper also contributes to the growing literature on the shipping industry and in-

frastructure investment in the transportation sector. Brancaccio et al. (2020) and Asturias

(2020), among others, endogenize transportation costs by carefully modeling the sector and

examining the implications of transportation markets on global trade. Our contribution to

this strand of literature lies in a detailed exploration of the economies of scale associated with

vessel size and the role of market structure. Jeon (2022) investigates the role of beliefs in

explaining investment patterns in the container shipping industry, while Kalouptsidi (2014)

analyzes how build times contribute to boom-and-bust cycles in shipbuilding. Our paper

adds to this body of work by providing deeper insights into how investments in larger vessels

(i.e., better shipping technology) interact with market structure.

Additionally, recent research has focused on maritime infrastructure investments.10 Gana-

pati et al. (2024) studies the role of hub-and-spoke structures in global trade, emphasizing

how large-scale hubs reduce trade costs through economies of scale and improved connec-

tivity. The paper highlights the dual effects of hubs, where they improve efficiency but also

concentrate market power, raising important questions for infrastructure investment pol-

icy. While their focus is on port-level dynamics, our paper investigates a similar efficiency-

concentration trade-off but at the carrier level. Brancaccio et al. (2024) examines how port

infrastructure investments impact global trade flows, shipping costs, congestion, and eco-

9Marshall and Parra (2019) find that if the profit gap is (weakly) increasing with the number of firms, com-
petition will promote innovation. Conversely, competition reduces innovation when the profit gap decreases
as the number of firms increases. Our results further indicate that a significant portion of the product-market
business-stealing effect arises from the ex-ante dynamic incentive to force competitors out of the market.
For seminal work on dynamic incentives, see Berry and Pakes (1993). A more detailed discussion of the
relationship between their findings and ours is provided in the estimation section.

10Brancaccio et al. (2024), Ganapati et al. (2024), and Fuchs and Wong (2024)
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nomic welfare under demand volatility and network effects. Their findings suggest that the

returns on port investments are positive for only a subset of U.S. ports, underscoring the

importance of targeted investment strategies. Our paper complements this discussion by

demonstrating how competition concerns can influence welfare estimates of maritime infras-

tructure investments.

2 Data, Industry and Stylized Facts

2.1 Industry

Approximately 80% of global merchandise trade by volume is transported via sea routes,

with containerized shipping accounting for about 35% of this volume and over 60% of its

commercial value.11 Since its introduction in the late 1950s, container shipping has signifi-

cantly improved the efficiency of maritime transportation. Bernhofen et al. (2016) provides

evidence that containerization has been a major driver of 20th-century economic globaliza-

tion.12 Subsequent innovations in shipping technology have largely focused on increasing

vessel size. Over the past two decades, container ship sizes have grown substantially, driven

by the pursuit of economies of scale to further reduce transportation costs (see Section 2.3.1).

Unlike bulk (or tramp) shipping, which operates more like an “ocean taxi,” container

shipping (also referred to as liner shipping) functions more like an “ocean bus.” Container

shipping services are provided by carriers to shippers on fixed routes with regular schedules,

typically on a weekly basis with predetermined port calls. The number of service lines offered

by carriers across specific regional origin-destination pairs (referred to as tradelanes) has

remained relatively stable over time.13 As noted by Wong (2022), container shipping exhibits

11See this link.
12For additional literature on the economic impact of containerization, see Coşar and Demir (2018) and

Brooks et al. (2018).
13In industry terminology, broad regional origin-destination pairs are called tradelanes. For example,

Transpacific East Bound (TPEB) refers to the tradelane from Asia to North America, while Far East West
Bound (FEWB) covers tradelanes from Asia to Europe. These represent the coarsest level of organization
for carriers’ shipping networks.
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a “round-trip” effect, where the head-haul leg carries the majority of the merchandise, while

the back-haul leg typically operates with lower quantities. Our demand estimation utilizes

data from both head-haul and back-haul legs, but the main empirical analysis focuses on the

head-haul segment.

The bus-like nature of the container shipping industry means carriers primarily rely

on capacity management to address demand volatility. Among the various tools, blank

sailing—where carriers cancel scheduled sailings on certain routes during specific weeks—is

the most frequently used for short-term capacity adjustments. Blank sailing during demand

downturns helps carriers improve per-vessel capacity utilization without incurring excessive

operational overhead.14 However, even during blank sailings, carriers still incur fixed costs

such as amortization, maintenance, or charter fees for idle vessels. This necessitates efficient

medium- and long-term fleet capacity management. In our model, the static game captures

short-term capacity management decisions, while the dynamic investment game models long-

term capacity planning.

The container shipping industry is highly concentrated. Unlike the more competitive

bulk shipping market (see Kalouptsidi (2014) and Brancaccio et al. (2020)), the high-sea

container shipping market is dominated by approximately eight major carriers, which are

organized into three strategic alliances.15 Historically, container shipping operated under

global shipping conferences, which acted as cartels to suppress freight rate competition and

limit entry by maintaining excess capacity. Although shipping conferences were dismantled

due to antitrust regulations (e.g., the Shipping Act of 1984 and the Ocean Shipping Reform

Act of 1998 in the U.S., and Regulation 1419/2006 in the EU), they were replaced by

global strategic alliances. Similar to airline alliances, these alliances feature vessel sharing

agreements (VSA), allowing members to share vessel capacity and slots. This arrangement

14Industry interviews suggest that most carriers aim to maintain a per-vessel capacity utilization rate
between 65% and 85%.

15High-sea container shipping refers to intercontinental long-haul shipping. As discussed in Ganapati
et al. (2024), the shipping network follows a hub-and-spoke structure, with high-sea shipping encompassing
hub-to-hub routes.
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enables members to deploy larger vessels, leveraging economies of scale and scope to reduce

operational costs. Over the past two decades, the market share of global alliances has risen to

90%, and the number of alliances has consolidated to three, with almost no new independent

carriers entering the high-sea shipping market.

2.2 Data

Our empirical analysis is based on two primary datasets. First, we use monthly container

trade flow volume and price index data from CTS to estimate the demand for container ship-

ping services. This dataset covers 22 origin-destination subregional trade flows, aggregated

from more granular monthly port-to-port shipping manifest information. Additionally, we

obtained origin-destination container price indices at the subregional level. A key advantage

of this price index is that it reflects the actual freight rates paid by shippers to carriers, incor-

porating both spot freight rates and contractual rates.16 Because the price index is derived

from the universe of shipping manifests, it provides a comprehensive and realistic represen-

tation of transportation costs by combining spot and contractual rates.17 Furthermore, the

CTS data includes information on the actual number of container boxes transported, which

is essential for estimating the marginal cost function for carriers, as discussed in the model

and estimation sections. For years not covered by CTS, we supplement the analysis with

monthly shipping indices from Drewry.

Our second key data source is the weekly capacity and vessel deployment dataset from

Sea Intelligence.18 This dataset provides information on the average vessel size of the fleets

operated by different firms and alliances, as well as a unique measure of capacity utilization.

16In the container shipping industry, spot freight rates are commonly referred to as “Freight of All Kinds”
(FAK), while contractual rates are referred to as “Named Account” (NAC).

17Due to legal and regulatory concerns, container shipping freight rate data is rare and difficult to obtain.
Excessive disclosure of freight rate information could facilitate tacit collusion or coordinated pricing among
carriers. As a result, we rely on an aggregated measure of freight rates, as carrier-specific prices are strictly
prohibited from being disclosed by CTS. Wong (2022) also highlights the significant challenges in accessing
detailed container shipping freight rate data. However, further insights into carriers’ pricing behavior using
more detailed proprietary data are provided in the author’s other work with logistics technology firms.

18Sea Intelligence uses this dataset in its flagship TCO reports.

11



Specifically, it records all canceled sailings (known as “blank sailings”) for major trade routes

from 2012 to 2020.19 This measure allows us to observe variations in capacity utilization

across carriers during periods of fluctuating aggregate demand. The data reveals a negative

correlation between capacity utilization and average vessel size during demand downturns,

indicating the cost advantage of operating larger vessels. This unique variation is crucial for

identifying the economies of scale in our analysis.

2.3 Stylized Facts

We present four sets of stylized facts in this section that will motivate our modeling, and

empirical framework.

2.3.1 Increasing Vessel Size

One of the most notable trends in the container shipping industry over the past decade is

the rapid increase in vessel size. As illustrated in Figure 1, the average vessel size for most

alliances grew from 10,000 TEUs in 2013 to 18,000 TEUs in 2020.20 This trend reflects

the industry’s pursuit of economies of scale (Merk (2018), Imai et al. (2006), Haralambides

(2019), Murray (2016), Yang et al. (2011), Veldman (2011)). Larger vessels generally achieve

lower per-unit transportation costs because the increases in building, manning, fuel, and

other operational expenses are proportionaly smaller than the increase in capacity. As noted

by Veldman (2011), while costs at sea decline with vessel size, port-related costs tend to rise,

suggesting that economies of scale are more significant on routes with longer sea distances

and port infrastructure optimized for mega ships. The extent of these economies of scale

19In the shipping industry, blank sailings are primarily used as a capacity-optimization tool, particularly
during periods of low demand. However, during the COVID-19 pandemic, blank sailings became more
common due to network disruptions caused by port congestion during periods of high demand. For this
reason, we avoid using the COVID-19 period to estimate our model.

20TEU, or Twenty-foot Equivalent Unit, is the standard unit of measurement in container shipping used
to describe the capacity of container ships and terminals. One TEU represents the volume of a standard 20-
foot-long container, which is 8 feet wide and approximately 8.5 feet high. For reference, a 40-foot container,
commonly used in shipping, is equivalent to 2 TEUs. TEU is widely used in the industry to quantify cargo
capacity and facilitate comparisons across vessels and operations.
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Figure 1: Increasing vessel size

will be quantified later in the paper.

2.3.2 Increasing Consolidation

Another key trend in the container shipping industry is rapid market consolidation. As

shown in Figure 2, the number of shipping alliances and independent carriers has declined

sharply over the past decade, dropping from eight in 2012 to just three major alliances by

2017. This consolidation is closely tied to, and arguably driven by, developments in shipping

technology, particularly the increase in vessel size (UNCT (2022), Merk (2018)). As vessel

size and capacity have grown faster than shipping demand, carriers’ profit margins have been

squeezed. Additionally, the economies of scale associated with larger vessels have altered the

cost structure, requiring high fixed costs to maintain global service networks. These shifts

have necessitated significant consolidation within the industry to sustain profitability.

Industry consolidation has occurred through exits, mergers and acquisitions, and the for-

mation of cooperative strategic alliances. For instance, Hanjin Shipping filed for bankruptcy
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Figure 2: Increasing consolidation

in 2016, and a wave of mergers and acquisitions reshaped the market over the past decade.

Larger vessels also prompted carriers to form alliances where members share slot space to

optimize network utilization. For a more detailed discussion of market structure and market

power, refer to [[]] in the Appendix. However, this paper does not focus on the specific mech-

anisms of consolidation. Instead, it examines the number of market players the industry can

sustain under different technology transition scenarios.

2.3.3 Lower Capacity Utilization For Carriers with Smaller Vessels

Our data offers a unique measure of fleet capacity utilization ratios in the container shipping

industry, which operates similarly to the airline or bus transportation systems. In each

period (typically quarterly), carriers decide on the number and size of ships to deploy for a

given service. However, due to demand volatility, carriers often deploy only a fraction of their

total fleet capacity once demand is realized, aiming to stabilize freight rates and maintain

profitability. This allows us to identify the fleet and vessel characteristics associated with

capacity utilization under fluctuating demand conditions.
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Figure 3: Lower capacity utilization for carriers with smaller vessels

Note: This figure plots the capacity utilization ratio of fleet against the log freight price for 2015. Each dot
represents a month-alliance observation. Lines are the LOESS fit.

In 2015, freight rates on Asia–Northern Europe routes faced significant downward pres-

sure due to excess capacity from the introduction of new 18,000 TEU-class vessels and weak

demand. During this downturn, we observed that alliances with smaller vessels reduced their

capacity utilization significantly more than those with larger vessels. In Figure 3, we plot the

monthly capacity utilization ratio against the log freight price for four alliances during the

2015 demand downturn. The data show that CKYHE and G6 alliances (blue and green lines)

reduced their capacity utilization ratios more drastically compared to 2M and O3 alliances.

As illustrated in Figure ??, 2M and O3 operated larger vessels on average than CKYHE and

G6. This negative correlation between average vessel size and capacity utilization during the

demand downturn suggests that carriers with larger vessels reduced capacity utilization less,

leveraging the cost advantages of larger ships through economies of scale. This variation in

capacity utilization serves as a key source of identification for estimating the economies of

scale associated with ship size, as detailed in Section 4.2.
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2.3.4 Panama Canal expansion leads to larger vessel and less players

To further illustrate the positive relationship between market concentration and the increase

in vessel size, we analyze the Panama Canal expansion in 2016 as an event study. The

expansion project significantly enhanced the canal’s capacity by allowing larger vessels to

transit. Prior to the expansion, the canal accommodated only Panamax ships with a maxi-

mum capacity of approximately 5,000 TEUs. The project, completed in mid-2016, added a

third set of locks, widened and deepened navigation channels, and upgraded infrastructure,

enabling the passage of New Panamax (Neo-Panamax) ships with capacities of up to 14,000

TEUs. This more than doubled the canal’s cargo capacity, facilitating the use of larger and

more efficient vessels on this critical maritime route.

As shown in the top panel of Figure 4, vessel sizes operated by alliance and non-alliance

carriers were comparable before the expansion, with both groups largely capped at 5,000

TEUs. Following the commencement of the third lock in mid-2016, alliance carriers began

deploying significantly larger vessels on this tradelane compared to non-alliance carriers,

which primarily consisted of smaller independent operators. Alliance carriers had the ad-

vantage of larger fleets, enabling them to quickly relocate bigger vessels from other routes

(e.g., Asia-Europe) to the Asia–North America East Coast route, capitalizing on the cost

efficiencies of larger vessels made possible by the expansion. For further details on vessel

reallocation across markets, refer to the appendix [[]]. The lower panel in Figure 4 illustrates

the impact on market structure: non-alliance carriers rapidly lost market share after the ex-

pansion (marked by the dotted black line), and by the second half of 2018, the tradelane was

entirely dominated by alliance carriers. This case demonstrates how an exogenous increase

in vessel size can lead to market consolidation.

The Panama Canal expansion illustrates the core policy question of this paper: how

changes in the frontiers of shipping technology influence both technology adoption and mar-

ket concentration. This case highlights that the frontier of shipping technology depends not

only on the potential vessel size but also the maritime infrastructure. Large vessels achieve
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their cost advantages only when supported by modernized ports and canals. However, as

demonstrated by the Panama expansion, these changes in technology frontier also drive in-

creases in vessel size and market concentration. In our counterfactual analysis, we explore

scenarios with varying economies of scale to identify the “optimal” level of scale for ship-

ping technology. In the context of the Panama expansion, this translates to determining the

“optimal” expansion size.

3 Model

We developed a non-stationary dynamic oligopoly model of the container shipping industry.

In the stage game, carriers compete in a quantity-setting framework, incorporating economies

of scale. Additionally, carriers make dynamic investment decisions to increase their vessel

sizes, capturing the strategic interactions involved in such investments.

3.1 Environment and Timeline

The model is non-stationary and finite horizon as we are interested in both the long-run

equilibrium and transition paths under different technology innovation trajectory. Similar

to the quality ladder literature, I discretize the average vessel size of the fleet into finite

number of levels: κ1,κ2, ...,κK , and state variables are

st = {Nt(κ1), ..., Nt(κK);Dt}

where

• Nt(κ1) is the number of carriers in the vessel size class κ1
21

21We treat strategic alliance as a single carrier/firm. Even though the arrangement within strategic
alliances are mostly on the supply side, and they are not allowed for joint marketing or pricing. However,
the VSA allows the alliance members to perfectly coordinate on their capacities. Within the Cournot game
framework in our stage game, this indicates carriers within the same alliance could be modeled as a single
entity. Asturias (2020) also made the same assumption in modeling the oligopoly in the container shipping
industry.
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Figure 4: Panama Expansion: Vessel Size and Market Share

Note: This figure presents the vessel size distribution and market share of alliance and non-alliance carri-
ers. Alliance carriers generally operate significantly larger fleets composed of bigger vessels globally, which
explains their ability to deploy New-Panamax class ships from other markets. The data reflect vessel size
and market share for all carriers on the Asia–North America East Coast tradelane, including certain routes
transiting westbound through the Malacca Strait and Europe. This accounts for the outliers in the vessel
size distribution chart prior to the Panama Canal expansion, as no vessel exceeding 5,000 TEUs should have
been able to traverse the canal at that time. The dotted line in the bottom panel marks April 2016, when
the third lock of the Panama Canal became operational.
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• Dt is the aggregate demand shifter22

Industry start at the state st. Nature will randomly pick a mover in this period. The

mover will make a dynamic decision between {invest, idle, exit}. The mover is restricted to

increase their average vessel size by one level up. Then all incumbents engage in quantity-

setting stage game. We assume there exists one potential entrant in each period, and it

makes entry decision after the stage game. The mover makes its dynamic action and the

state evolves to the next period.

3.2 Stage Game

We assume carriers face a constant elasticity demand over aggregate quantity, and the de-

mand function take a log-linear form:

log(Qodt) = log(Dodt)− σ log(Podt) (1)

where Qodt is the total container volume on route od at time t, and Podt is the per-TEU

freight price. Dodt is the route-time specific demand shifter and −σ is the price elasticity of

demand which will be estimated later.

The cost function of each carrier has a variable cost and fixed cost component:

C(ρit;κ
i
t). = c(qit, κ̃(ρ

i
t,κ

i
t))󰁿 󰁾󰁽 󰂀

variable cost

+ f · ρit · ni
t · (κi

t)
α

󰁿 󰁾󰁽 󰂀
fixed cost

(2)

In each period, we assume carrier i cannot change its average vessel size κi. However, due

to the volatility in demand, carrier would be able to change their sailing frequency ρi ∈ [0, 1].

22We assume the demand shifter follows a distribution: Dt ∼ Ψ(µD,σD). To simplify computation
burden, we also assume the moving carrier will only calculate the value function based on the mean of the
demand shifter: µD, implying the long-run capacity management is based on the average demand. However,
the capacity utilization or blank sailing will depend on the realization of Dt, implying the variance of the
demand shifter will influence carriers’ short term capacity management strategy.
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The effective capacity supplied by carrier i in period t is

κ̃(ρit,κ
i
t) = ρitκ

i
tn

i
t (3)

where ni
t is the number of scheduled sailing in period t23. Following Ryan (2012), we construct

a linearly increasing marginal cost curve for carrier i

mc
󰀃
qit,κ

i
t

󰀄
=

󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

c+ b
qit,

κ̃(ρit,κ
i
t)

if qit ≤ κ̃(ρit,κ
i
t)

∞ otherwise.

(4)

This variable cost function specification assumes the marginal cost increases as the firm

gets closer to its effective capacity. Another convenient property of this marginal cost as-

sumption is the aggregate supply function in the market could be represented as

mc(Qt, K̃t) = c+ b
Qt

K̃t

(5)

where K̃t =
󰁓

i κ̃(ρ
i
t,κ

i
t). The equilibrium price is determined by the intersection of demand

curve in Equation 1 aggregate supply curve in Equation 5:

Pt = c+ b
Qt

K̃t

(6)

This equilibrium condition states that the price is determined by the total utilization

rate of the effective capacity: Qt

K̃t
. Since we have data for Pt, Qt and K̃t, we would be able

to estimate the key marginal cost function parameters b and c using a linear regression.

The fixed cost component in the carrier’s total function (Equation 2) is f · ρit · ni
t · (κi

t)
α.

The fixed cost will increase as the average vessel size (κi
t) increases, but not in proportion

as the size increase. The economies of scale of larger average vessel size comes in mostly

23We treat ni
t as exogenous in the stage game because the number of service and scheduled weekly sailing

are hardly changed even as the market consolidates and the vessel size gets bigger.
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through this fixed cost component because the marginal cost will be the same for all carriers

in equilibrium as determined in Equation 5.24 This is a very reasonable depiction of the

cost structure of container shipping in reality, as the economies of scale of larger ships comes

through the fact that the fixed cost component of operating a ship will not increase in

proportion with the vessel size.

In stage game, carrier i tries to maximize its per-period profit by choosing their sailing

frequency:

πi
t(κ

i
t, st) = max

ρit

Ptq
i
t − C(ρit;κ

i
t) (7)

where st = ({κi}, Dt) is the state variable which include the average vessel size of all carriers

and the demand state. Note that the fixed cost of operation exhibits economies of scale for

parameters α < 1 which means the per-unit cost of fixed cost of operation is lower for bigger

ships. We use a fixed point algorithm to solve for the equilibrium of stage game.

3.3 Investment Game

In each period, Nature will randomly pick a mover from incumbents. For example, if we

have Nt carriers in period t, the probability of a certain carrier getting picked is 1
Nt
. Only the

mover would be able to make a dynamic decision between {idle, upgrade, exit} by solving

a discrete choice problem as in Equation 4.3. It will draw a private idiosyncratic shock for

each potential action: {εupgrade, εidle, εexit} from a Type-I extreme value distribution. If the

mover chooses to upgrade, it can only increase its average vessel size by one level. And the

24This is a similar modeling strategy as in Jeon (2022). However, even the marginal cost is the same
for all carriers, carrier with a larger average vessel size will supply more quantities as the individual slope
of the marginal cost function will be flatter for larger carriers, leading them to sell more quantities in the
equilibrium.
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upgrade/investment cost it needs to pay is
󰀃
ι · (κt+1) + εupgrade

󰀄
.25

V I
i,t = max

󰀻
󰁁󰀿

󰁁󰀽
−
󰀃
ι · (κt+1) + εupgrade

󰀄
+ Λi,t+1 (s (tt+1) | s (tt) , upgrade)󰁿 󰁾󰁽 󰂀

upgrade

,

−εidle + Λi,t+1 (st+1 | st, idle)󰁿 󰁾󰁽 󰂀
stay idle

,

φexit
i,t − εexit

󰁿 󰁾󰁽 󰂀
exit

󰀼
󰁀

󰀾 .

where φexit(κ) is the scrap value.26 Λt+1(st+1) is the expected value function in the next

period before the Nature picks a mover. It’s formulated as the average of expected value

functions weight by the probability each carrier will be chosen as the mover:

Λi,t+1(st+1) = Pr(i is chosen) · V I
t+1(st+1)+

󰁛

j ∕=i

Pr(j is chosen) ·Wi,t+1(st+1; j is the mover)

where Wt+1(st+1; j is the mover) is the expected value function of firm i where another firm

25We assume the deterministic part of the investment to be proportional to the average vessel size. This
is because it will cost more to upgrade a fleet from the average size of 16,000 TEU to 18,000 TEU than from
the average size of 14,000 TEU to 16,000 TEU.

26Different from our model specification here, we model the exit process differently when it comes to
estimation. Rather than directly estimate the scrap value, we assume a per-period maintenance cost m(κ) =
m · κ which is proportional to the average vessel size. Carriers need to incur this maintenance cost as long
as they are in operation. This is similar to the idea of the adjustment cost in the macroeconomic literature.
Therefore the actual dynamic equation we are estimating is:

V I
i,t = max

󰀻
󰁁󰀿

󰁁󰀽
−
󰀃
ι · (κt+1) + εupgrade

󰀄
−m · κt + Λi,t+1 (s (tt+1) | s (tt) , upgrade)󰁿 󰁾󰁽 󰂀

upgrade

,

−εidle −m · κt + Λi,t+1 (st+1 | st, idle)󰁿 󰁾󰁽 󰂀
stay idle

,

0− εexit󰁿 󰁾󰁽 󰂀
exit

󰀼
󰁀

󰀾 .

we make this adjustment as this makes the estimation easier to converge. On the other hand, the scrap value
is just the NPV of the future maintenance cost.
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j is chosen to be the mover:

Wi,t+1(st+1; j is the mover) =Pr(j expands) · Λi,t+1(st+1; j expands)+

Pr(j idles) · Λi,t+1(st+1; j idles)+

Pr(j exits) · Λi,t+1(st+1; j exits)

3.4 Entrants’ Problem

We assume there exists one potential entrants in each period. The potential will draw a

private idiosyncratic cost shocks for both of its potential action of entering and staying out.

After observing the private cost shocks, the potential entrant decides whether to enter by

solving the following problem :

V E = max
󰀋
−
󰀃
ζE + εenter

󰀄
+ Λ (s (t′) | s (t) ; enter ) ,−εstay out

󰀌

The potential entrant can only start from the lowest state if it chooses to enter.

3.5 Equilibrium

To close the model, we assume the state stops evolving after T , and all carriers continue to

receive the stage game payoff in perpetuity for t beyond T . The terminal value is then the

net present value of the stage game payoff:

Λi (st) =
πi (sT )

1− β

The strategies played by carrier in Equilibrium are type-symmetric and we can solve this

finite horizon, random mover model by backward induction. Given our setup of a random

mover picked by Nature in each period, this simplify our model solution to a single agent

discrete choice problem in each period.
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4 Estimation and Empirical Results

4.1 Estimating Demand

Given our log-linear demand system, the specification we use is the following:

lnQodt = −σ lnPodt + γot + γdt + γod + εodt (8)

where o, d, t represent origin, destination, and month, respectively. Qodt denotes the TEU

volume on tradelane od at time t, and Podt represents the per-TEU container freight price.

We include fixed effects for origin-time (γot), destination-time (γdt), and origin-destination

pairs (γod). However, there exists an issue of price endogeneity, as certain origin-destination-

time-specific factors in εodt may simultaneously influence both freight price Podt and container

volume Qodt. To address this, we employ an instrumental variable framework.

In late December 2023, the Houthi group began attacking ships passing through the

Suez Canal, prompting carriers to gradually divert their vessels to the Cape of Good Hope

(see Figure 5). This diversion significantly increased shipping prices on origin-destination

routes previously reliant on the Suez Canal (see Figure 6 for a comparison of price dynamics

between routes affected and unaffected by the attack). Leveraging proprietary monthly

data on container trade volumes and prices across 22 origin-destination pairs from CTS, we

observe substantial increases in freight prices on the affected routes. To address the price

endogeneity issue, we use the recent Red Sea Crisis as a supply-side instrument for price:

lnPodt = [o-d route is affected at t] + γot + γdt + γod + 󰂃odt (9)

The identification of our demand estimation relies on the time-series and cross-sectional

variations across the 22 main trading routes in our data, under the assumption of constant

price elasticity of demand.

We present our demand estimation results in Table 4. Our analysis estimates the price
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Figure 5: Red Sea Crisis
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Figure 6: Shipping price for routes affected and not affected by the Houthi’s attack

elasticity of container shipping demand to be -1.22, meaning a 10% increase in freight prices

would result in a 12.2% decline in total volume, on average.27 This elasticity is relatively low

compared to estimates in the existing literature. For instance, Kalouptsidi (2014) used ship

size and age as instruments for price and estimated the demand elasticity for bulk shipping at

-6.17. Similarly, Jeon (2022) applied a comparable strategy and estimated container shipping

demand elasticity at -3.89. Wong (2022) employed the round-trip effect as an instrument

and found an elasticity of -3. Asturias (2020) used population as an instrument, estimating

an elasticity of -5. More recently, Otani (2024) employed a similar approach to Jeon (2022)

and estimated an elasticity of -0.89 for the 1966–1990 period, attributing this low value to

the limited availability of alternative transportation methods during that era.

Our elasticity estimate is also on the lower end compared to these studies. One pos-

27For comparison, we also show the results of a hedonic price regression in column (3) in Table 4. As
we can see from the results, the price-elasticity will not be significantly from 0 if we do not employ our
instrumental variable technics.
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Table 1: Demand Estimation

IV IV OLS

Stage 1 Stage 2

lnPodt lnQodt lnQodt

disruption dummy 0.120∗

(0.059)

Podt −1.183∗∗ −0.140
(0.558) (0.128)

Obs 88 88 88
origin × month X X X
origin × destination X X X
destination × month X X X
Adjusted R2 0.849 0.998 0.996
F-stat 8.74 - -

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

sible explanation is that our estimate reflects short-run demand elasticity, where the lack

of alternative transportation modes constrains substitution. When combined with additive

shipping costs, our results align with a trade elasticity in the range of 7–8. With estimted

demand elasticity σ, we can then estimate the demand shifter Dodt. For further details on

the demand estimation process, please refer to Appendix A.

4.2 Estimating Economies of Scale

We estimate the parameters in per-period profit function in two steps. In the first step, we

use OLS regression to recover the marginal cost function parameter (b, c) in Equation 6 and

results are summarized in Figure 18 and Table 5 in Appendix B.

Pt = c+ b× Qt

K̃t

+ 󰂃t (10)

Then in order to recover the parameters in fixed cost, we search over the grid for param-

eter (f,α) to minimize the sum of squared difference between the sailing frequency observed
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in data and the sailing frequency simulated in our stage game equilibrium:

min
f,α

󰁛

i,t

(ρit − ρ̂it)
2 (11)

where ρ̂it is obtained by solving the system of non-linear equation in Equation 7 given any

guesses of (f,α). Our estimation results are in Table 2. We also showcase our in-sample and

out-of-sample model fit in Appendix C.

Table 2: Cost Function Estimation

b c f α

2.20 -0.8 1.36 0.66

4.3 Estimating Dynamic Parameters

There are four dynamic parameters we need to estimate: investment cost, maintenance cost,

entry cost and the scale of the private idiosyncratic errors. The investment cost to upgrade

the average vessel size to the next level is proportional to the average vessel size of the

fleet: ι(κ) = ι · κ. We also estimated the maintenance cost m(κ) which all active carriers

will incur as long as they are in operation. Exist and consolidation will help to identify

the maintenance cost. Since there isn’t entry in our data sample, we cannot point identify

the entry cost. However, by revealed preference, we can use the estimated expected value

to provide a lower bound for the entry cost. Finally we assume the private idiosyncratic

cost shock for investment, maintenance and entry cost are all drawn from the same Type-I

Extreme Value distribution: εidle, upgrade, entry, exit ∼ T1EV (σ · κ). Note that we scale the

variance of the distribution by the average vessel size.

Thanks to the assumption that the private idiosyncratic cost shocks are drawn from a

T1EV distribution, we can right the probability of various dynamic action for a mover as

an analytical expression of the expected value functions. For example, if carrier i with the
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current average vessel size of κ is chosen as the mover, then its probability to invest to

upgrade the vessel size is

Pr(upgrade|st) =
exp(V I,upgrade

κ,t /σκ)

exp(V I,idle
κ,t /σκ) + exp(V I,upgrade

κ,t /σκ) + exp(V I,exit
κ,t /σκ)

(12)

where V I,upgrade
κ,t is the value function if carrier i chooses to upgrade its fleet vessel size as

in Equation 4.3.

V I,upgrade
κ,t =−

󰀃
ι · (κt+1) + εupgrade

󰀄
−m · κt + Λi,t+1 (s (tt+1) | s (tt) , upgrade)

V I,idle
κ,t =− εidle −m · κt + Λi,t+1 (st+1 | st, idle)

V I,idle
κ,t =0− εexit

And similarly, we could calculate the probability for potential entrant to enter

Pr(enter|st) =
exp(V I,enter

κ0,t /σκ0)

exp(V I,enter
κ0,t /σκ0) + 1

(13)

where the payoff function for entering is defined as

V I,enter
κ0,t = ζ + εenter + Λi,t+1(s(tt+1) | s(tt), enter)

We use a full solution approach through method of simulated moments to estimate the

dynamic parameters by minimizing the transition path of average vessel size in data and that

generated by our model. With a guess of the dynamic parameters, we start the estimation

using a backward induction approach. We assume the state stops evolving after T = 100

months, and all carriers continue to receive the stage game payoff in perpetuity beyond T.

This provides us with a terminal payoff estimates Λi(sT ). Then we could solve the dynamic

discrete choice problem for period T − 1 all the way to the initial state. This solution will

provide us with a time-specific estimates of the upgrading/idling/exit/entry probability for
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Table 3: Dynamic parameter estimates

ι m ζ31 σ

9.25 0.675 280 5.6

each potential state. Then we start simulate the evolution of the industry state using these

estimated transition probability. We perform a grid search over the parameter space for our

dynamic parameters to find the one minimizing the distance between simulated industry

state transition path and those observed in the data. More specifically, we focus on two

moments: i) the industry mean of average vessel size, and ii) number of firms.28

We summarized the estimated dynamic parameters in Table 3. Just to have a reality

check of our estimates, our estimates of the investment/upgrade cost ι = 9.25 implies the

price of a 20,000 TEU container ship will be price at 277.5 million USD.29 It falls within

the range of 150-300 million USD of the same ultra-large container ship price in the ship

building industry.30 For more details on the dynamic model fit, please refer to the Appendix

D.

4.3.1 Market Structure and Investment Incentive

The estimated policy function provides insights on how market structure influences invest-

ment and innovation incentives. Figure 7 illustrates the probability of upgrading for a moving

carrier32 under various market structures and industry states.

First, when the moving carrier leads the industry in average vessel size (depicted in the left

region of the figure), the incentive to upgrade increases with the number of firms (as indicated

28Most literature(for example, Igami (2017); Igami and Uetake (2020)) estimates the dynamic parameter
using a maximum-likelihood estimation approach to maximize the likelihood of the observed state transition.
However, a unique challenge of my setting is the scarcity of the consolidation, which makes the MLE approach
not feasible and finalize on the method of simulated moments.

29This is calculated as 9.25 per TEU*20,000TEU*1500 USD = 277.5 million USD. 1500 USD is the average
freight rate on the Asia-Northern Europe route.

30Source: https://gegcalculators.com/whats-the-cost-of-a-normal-cargo-ship/?utm source=chatgpt.com
32A moving carrier is the firm chosen by ‘Nature’ to make a dynamic decision in each period. Here, we

assume the mover currently operates vessels with an average size of 18,000 TEU.
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by the blue and green lines being above the red line). Conversely, this incentive diminishes

as the mover transitions from a leader to a follower. This suggests that more competitive

market structures amplify the dynamic incentive to invest or innovate for market leaders

but not for followers. The rationale is that in a competitive market, leaders face a stronger

business-stealing incentive: by investing or innovating, they can pressure weaker competitors

to exit. This creates a dynamic business-stealing incentive for leaders. However, in more

concentrated markets, innovation provides insufficient cost advantages to drive competitors

out, significantly dampening the incentive to invest (as seen in the near-zero probability for

leaders in a 3-player market, represented by red dots in Figure 7). For followers, the opposite

holds true. In concentrated markets, the larger share of the market for each player intensifies

the business-stealing effect, enhancing the incentive to invest.33

Second, the incentive to invest or innovate exhibits an inverted U-shape with respect to

the industry’s average state. Market leaders and followers have a larger incentive to invest

when they are closer to the industry average. For market leaders, the incentive diminishes

as their vessel size diverges further from the industry average, reflecting reduced benefits

of pulling even further ahead. Conversely, for followers, the incentive to invest is strongest

when they are closer to the industry average or leaders, as the potential to catch up is more

achievable.

Third, market followers generally exhibit a greater incentive to invest than leaders. As

shown in Figure 7, the probability of investment is higher on average in the right region

of the figure, where the firm is a follower. This aligns with the intuition that investing to

catch up is often less costly than investing to stay ahead. Consequently, this dynamic limits

asymmetries among firms, as carriers tend to grow their vessel sizes at relatively similar rates.

This pattern is corroborated by the data, where carriers have been observed expanding their

vessel sizes at comparable paces.

33Further explanation is needed to reconcile this finding with existing literature. . . [[]]
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Figure 7: Probability to Invest: Market Structure

Note: This figure plots the probability to invest or to upgrade to the next level of vessel size for carrier
chosen to move. Each dot represents the probability for a specific state (we reduced the dimension of the
industry state by calculating the average vessel size in the industry). Since the current state of the mover
is 18,000 TEU, represented by the vertical dotted black line. The left region of the figure represents the
state where the mover is a market leader where its average vessel size is larger than the industry average.
The right half represents the case where the mover is a market follower. Different color represents different
market structures (#firm = 3, 4, 5). We use the LOESS with a span of 0.1 to plot the smoothed policy
function.
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4.3.2 Aggregate Demand and Investment Incentive

In Figure 8, we present the probability of investment across various industry states under

different expected aggregate demand scenarios, as derived from our dynamic estimation.34 As

expected, the probability of upgrading average vessel size is higher when aggregate demand

is greater (Figure 8, with red and blue lines above the green line in the right half). However,

higher demand predominantly increases the investment incentives for market followers, while

the incentives for market leaders are comparatively lower.

This asymmetry can be attributed to the dynamics of business-stealing potential. Under

higher aggregate demand, it becomes significantly more challenging for market leaders to

force competitors out of the market, thereby limiting their dynamic incentive to invest.

Conversely, for market followers, the opportunity to gain market share through investment

is amplified under higher demand, resulting in a stronger incentive to invest.

To summarize the findings from the dynamic estimation, we find that, on average, the

incentive to invest is higher for market followers and increases with aggregate demand. How-

ever, this aggregate trend masks significant differences in how market structure and demand

influence investment incentives for market leaders versus followers. In more competitive

and challenging environments—characterized by more competitive market structures and

lower demand—market leaders exhibit stronger incentives to invest, driven by a heightened

business-stealing motive to push weaker competitors out. In contrast, more concentrated

markets and higher aggregate demand levels enhance the investment incentives for followers,

as the potential profit gains from catching up become more substantial. These dynamics

suggest that industry-wide technology adoption accelerates in the early stages when mar-

ket is more competitive, led by leaders striving to maintain their advantage, but followers

eventually close the gap more quickly as the market consolidates.

34The middle-level demand corresponds to the average demand shifter estimated from the data, while
high-level demand assumes a 25% increase in the demand shifter, and low-level demand assumes a 25%
decrease.
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Figure 8: Probability to Invest: Aggregated Demand

Note: This figure plots the probability to invest or to upgrade to the next level of vessel size for carrier
chosen to move. Each dot represents the probability for a specific state (we reduced the dimension of the
industry state by calculating the average vessel size in the industry). Since the current state of the mover
is 18,000 TEU, represented by the vertical dotted black line. The left region of the figure represents the
state where the mover is a market leader where its average vessel size is larger than the industry average.
The right half represents the case where the mover is a market follower. Different color represents different
market structures (#firm = 3, 4, 5). We use the LOESS with a span of 0.1 to plot the smoothed policy
function.

34



5 Counterfactual Analysis

In this counterfactual analysis, we investigate how the progression of shipping technology

(measured by average vessel size) and market structure (represented by the number of mar-

ket players) would vary under different scenarios of i) economies of scale and ii) expected

aggregate demand over a 10-year period.

5.1 Maximum Vessel Size

In this counterfactual exercise, we examine scenarios where the maximum possible average

vessel size varies. Specifically, we consider cases where the maximum average vessel size is

capped at 18,000 TEU, 20,000 TEU, and 24,000 TEU. Our analysis focuses on both the long-

run equilibrium and the transition path under each scenario. For each case, we simulate the

evolution of the number of players and average vessel size (Figure 9), as well as the median

freight price (Figure 10) over a 15-year period (180 months), while keeping expected demand

and innovation step size constant.35

In the long-run equilibrium, surviving carriers upgrade their fleets to the maximum vessel

size across all scenarios. However, when the maximum vessel size reaches 24,000 TEU, the

market consolidates into a duopoly.36 In contrast, the scenarios with maximum vessel sizes

of 18,000 TEU and 20,000 TEU stabilize with three firms in the long run (Figure 9, top

panel). Regarding freight prices, the scenario with a 20,000 TEU cap results in the lowest

median freight price in the long run (Figure 10, green line), as this scenario achieves the

highest total market capacity (Figure 11, green line). When the maximum vessel size is too

large (24,000 TEU), market consolidation into a duopoly reduces total capacity (Figure 11,

blue line). Conversely, when the maximum vessel size is too small (18,000 TEU), the market

stabilizes with three firms, but the limited vessel capacity prevents the market from reaching

35The step size is assumed to be 2,000 TEU.
36Currently, the largest container vessel, MSC Irina, has a capacity of 24,346 TEU. While the average

vessel size on the Asia-Northern Europe tradelane is below this level, our setting interprets maximum vessel
size as the upper bound for a fleet’s average vessel size.
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its full potential (Figure 11, red line). These results suggest an optimal maximum vessel size

that balances the cost-reducing benefits of larger vessels with the anti-competitive effects of

market concentration.

We also find that the transition path of vessel size growth is steeper when the maxi-

mum vessel size is larger. Larger vessels offer forward-looking firms greater cost advantages,

increasing their business-stealing incentives. Interestingly, the scenario with the largest max-

imum vessel size (24,000 TEU) results in the lowest freight prices during the early transition

phase, as vessel size growth outpaces market consolidation. However, the anti-competitive

effects of market concentration dominate in the long run, leading to higher prices once the

market evolves into a duopoly.

Finally, we present the welfare calculations from our simulation in Table 4. As shown

in the top panel, the equilibrium with a 20,000 TEU maximum vessel size generates the

highest consumer surplus over the 15-year simulation period, exceeding the case with an

18,000 TEU cap by 43 billion USD and the 24,000 TEU case by 113 billion USD. However,

producer surplus is significantly higher in the scenario with more market concentration and

larger vessels of 24,000 TEU. While the total surplus is highest in the 24,000 TEU scenario,

this reflects a substantial transfer of surplus from consumers to producers, exceeding 100

billion USD.

To further examine the welfare dynamics, we break down the calculations into the tran-

sition period (first six years) and the stabilizing period (years seven to fifteen). During the

transition period, consumer surplus may experience a temporary reduction, ranging from 22

to 28 billion USD compared to other equilibria, before recovering to generate significantly

higher consumer welfare in the long run.

These welfare calculations offer a basis for evaluating the cost-benefit implications of mar-

itime infrastructure investments to accommodate larger vessels. If the costs of infrastructure

modernization exceed the improvements in consumer surplus estimated here, the net returns

on such investments may be negative, raising concerns about their economic viability.
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Figure 9: Different Maximum Vessel Size: Transition Path

Note:

37



Figure 10: Different Maximum Vessel Size: Price

Note:

Figure 11: Different Maximum Vessel Size: Total Capacity

Note:
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Table 4: Welfare Calculation Across Different Maximum Vessel Sizes (in Billion USD)

Breakdown Maximum Vessel Size Consumer Surplus Producer Surplus Total Surplus

Total 18, 000 0.00 0.00 0.00
Total 20, 000 43.31 −12.60 30.71
Total 24, 000 −70.35 127.45 57.10

Transitiona 18, 000 0.00 0.00 0.00
Transition 20, 000 −21.74 6.43 −15.31
Transition 24, 000 6.14 −17.74 −11.60

Long-runb 18, 000 0.00 0.00 0.00
Long-run 20, 000 50.12 −25.83 24.29
Long-run 24, 000 −120.61 150.24 29.63

a Transition refers to the simulated dynamics during the first 72 months.
b Long-run refers to the steady-state equilibrium values after the transition period (month 73-180).
Note:

This counterfactual exercise highlights the importance of considering the competitive

effects of technological advancements, particularly when they involve significant economies

of scale. While a rapid “arms race” in technology adoption may reduce consumer prices

during the transition phase, it risks leading to excessive market concentration in the long

run. In the context of container shipping, this exercise underscores the need for competition

and maritime authorities to carefully evaluate the impact of vessel size limits. Allowing

excessively large vessel sizes could result in socially suboptimal market concentration, while

overly restrictive size limits could prevent the industry from fully realizing the cost-saving

benefits of economies of scale. This calls for incorporating the competitive implications into

policy decisions regarding maritime infrastructure improvements, such as port and canal

expansions.

5.2 Aggregate Demand and Maximum Vessel Size

In our previous analysis, we assumed constant aggregate demand. Here, we simulate various

aggregate demand scenarios to examine how the industry’s transition dynamics and long-

run equilibrium respond under differing demand conditions. Specifically, we simulate the

transition paths for maximum vessel sizes of 18,000 TEU, 20,000 TEU, and 24,000 TEU
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across low, middle, and high demand levels.37

Our results indicate that the optimal maximum vessel size depends on the level of ag-

gregate demand. As shown in Figure 12, a maximum vessel size of 20,000 TEU generates

the lowest long-run freight prices under low and middle demand scenarios. However, this

is not optimal when aggregate demand is 25% higher. This is because the trade-off be-

tween the anti-competitive effects of market concentration and the pro-competitive benefits

of technological upgrades shifts with demand levels.

Under low demand, the market supports only two players in the long run, regardless of

the maximum vessel size (Figure 13, top left panel). Carriers lose their incentive to invest

further once their average vessel size reaches approximately 20,000 TEU, making 20,000 TEU

the optimal maximum vessel size (Figure 13, bottom left panel). In contrast, under high

demand, the market can sustain either a four-player scenario with an 18,000 TEU average

vessel size or a three-player scenario with a 24,000 TEU average vessel size. In this high-

demand environment, the downside of market concentration is less pronounced. A maximum

vessel size of 18,000 TEU leverages the competitive benefits of having four players, while a

maximum vessel size of 24,000 TEU maximizes the pro-competitive effects of technology

upgrades.38

5.3 Innovation Step Size

We previously examined the competitive effects of changing the technology frontier in our

counterfactual analysis. In this section, we shift our focus to the competitive implications

of innovation step size. Specifically, we simulate scenarios where the incremental vessel size

that carriers can upgrade by is varied, while keeping the maximum vessel size fixed. This

analysis demonstrates how differences in innovation step size can drive the industry toward

37Middle-level demand corresponds to the average demand shifter estimated from the data. High-level
demand assumes a 25% increase, while low-level demand assumes a 25% decrease.

38In the high-demand scenario, both the 18,000 TEU and 24,000 TEU maximum vessel size cases achieve
a total capacity of 72,000 TEU (Figure 14, right panel). However, their long-run performance in terms of
freight price dynamics differs, particularly under price volatility. For more details, see Appendix E.
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Figure 12: Different Maximum Vessel Size: Price Across Different Demand Level

Note:

distinct equilibria. The non-stationary setting of our model is particularly advantageous

here, as it allows us to articulate how the industry evolves toward long-run equilibrium.

In this simulation, we fix the maximum vessel size (technology frontier) at 24,000 TEU

and compare the industry outcomes under innovation step sizes of 1,500 TEU and 2,000

TEU. Figure 15 illustrates the transition paths for the average vessel size and the number

of market players. With a larger innovation step size, the market consolidates more rapidly,

reaching a duopoly within 7–8 years. In contrast, the scenario with a smaller step size

stabilizes at an oligopoly with three players. Despite the maximum vessel size being set at

24,000 TEU, the industry’s average vessel size converges to around 19,000 TEU.

The reason behind these differing equilibria is that a larger step size amplifies the business-

stealing payoff, incentivizing carriers to invest and upgrade more aggressively. Figure 16

depicts the probability of investment for a carrier currently operating vessels with an average

size of 18,000 TEU. In the case with a step size of 1,500 TEU, the investment probability
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Figure 13: Different Maximum Vessel Size: Transition Path Across Different Demand Level

Note:
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Figure 14: Different Maximum Vessel Size: Total Capacity Across Different Demand

Note:

is significantly lower than that of the 2,000 TEU scenario. Specifically, if the carrier is a

market leader, its probability of upgrading is nearly zero.39 This explains why, in the 1,500

TEU step-size scenario, the industry’s average vessel size converges to approximately 19,500

TEU (see the red line in the lower panel of Figure 15).

Innovation step size also affects price dynamics. As shown in Figure 17, prices are lower

during the transition phase (0–72 months) in the scenario with a larger innovation step size,

primarily due to more aggressive investment. However, this aggressive investment accelerates

market consolidation, leading to reduced total capacity and higher long-run prices (Figure 26,

blue line). This highlights a trade-off in the welfare impact of innovation step size between

the transition phase and the long-run equilibrium.

We also explored the effects of varying initial industry states on transition paths and

39As shown in Figure 16, the probability of investment increases as the carrier lags further behind the
industry average. This aligns with our earlier findings that market followers have stronger incentives to
invest compared to market leaders.
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Figure 15: Different Step Sizes: Transition Path

Note: The top panel shows the number of players in the market over time, and the bottom panel shows the
average vessel size.
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Figure 16: Different Step Sizes: Incentive to Invest

Note: Investment probabilities for a carrier currently operating at 18,000 TEU.

equilibria. While differences in initial conditions primarily influence the transition path, the

long-run equilibrium remains unaffected. For further details on this analysis, see Appendix

F.

6 Conclusion

This paper examines the competitive effects of technological innovation in the container

shipping industry, with a particular focus on the relationship between increasing vessel size,

market structure, and welfare. Our analysis highlights that while advancements in shipping

technology, such as the trend toward larger vessels, generate significant economies of scale

and reduce operational costs, they also exacerbate market concentration. This trade-off

between efficiency and competition raises important questions about whether the pursuit of

ever-larger vessels has gone too far from a welfare perspective.

Using a dynamic oligopoly framework, we show that the impact of technological ad-
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Figure 17: Different Step Sizes: Price

Note: Price dynamics under different innovation step sizes.

vancements depends critically on both the industry’s technological frontier and the pace

of innovation. Larger vessels reduce costs but lead to greater market consolidation, which

can erode consumer benefits through higher freight prices. Our counterfactual analysis re-

veals that the welfare-optimal technology frontier lies at an average vessel size of around

20,000 TEU under current demand conditions, as further increases in vessel size risk over-

consolidating the market. Moreover, we find that the speed of innovation plays a crucial

role in shaping industry equilibrium, with smaller innovation steps fostering competition

and larger steps driving consolidation. These findings have significant policy implications,

particularly for the design of infrastructure investments and regulatory frameworks. Policy-

makers must balance the pro-competitive effects of technological advancements with the risk

of market concentration, ensuring that the benefits of innovation are distributed equitably

across the economy.
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A Details On Demand Estimation

The container trade volume and price data from Container Trade Statistics cover 22 major

trade routes, corresponding to 11 round-trip lanes: Asia-Europe, Asia-US, Asia-South Amer-

49



ica, Asia-Indian Subcontinent, Europe-US, Europe-South America, Europe-Indian Subcon-

tinent, US-Indian Subcontinent, South America-Indian Subcontinent, Asia-Australia, and

Australia-Europe. To ensure proper identification and control for fixed effects at each node

in the shipping network, we include each region as either an origin or a destination in at

least two routes. Since our data extends only until February 2024, we set the start date

of our sample to November 2023 to maintain a balanced panel before and after the Houthi

attacks, which serve as the treatment event.

To account for trade volume heterogeneity across routes, we employ a weighted two-

stage least squares approach, using trade volume as weights, thereby ensuring that busier

trade lanes have greater representation in the estimation. Additionally, we classify Asia-

US and ISC-US routes as part of the treatment group, but only from January 2024 onward.

This is because the Houthi attacks primarily affected Asia-Europe trade by extending transit

times by approximately two weeks, which increased the capacity required to maintain weekly

sailing schedules. This capacity spillover led to shortages on other trade lanes, but with a

lagged effect. To account for this transmission delay, we introduce Asia-US and ISC-US

routes into the treatment group one month after the attacks. This adjustment highlights the

interconnected nature of the global container shipping network.

An additional consideration is the relationship between the estimated price elasticity of

demand for container shipping services and the broader trade elasticity documented in the

literature. Since shipping costs are additive to the total cost of imports, the two elasticities

are conceptually distinct. Specifically, the demand elasticity we estimate, σ, relates to trade

elasticity, σtrade, through the equation:

σ ≈ f

f + z
· σtrade,

where f represents the freight price and z denotes the cargo value. Assuming that freight

rates account for approximately 10–15% of total import costs, our estimated demand elastic-
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ity translates to a trade elasticity in the range of 10–12—on the higher end, yet still within

the range observed in the trade literature. Moreover, our estimates should be interpreted as

an upper bound for short-run demand elasticity. This is due to potential upward bias intro-

duced by the increase in transit time caused by the attack, as longer transit times reduce

the effective value of fast shipping. For a more detailed discussion on demand estimation,

including adjustments for transit speed valuation, we refer the reader to the author’s related

work using proprietary data from a logistics freight forwarder.

B Details on Marginal Cost Estimation

We estimate the marginal cost function for carriers in two steps. First, we estimate Equa-

tion 10 under the assumption that all carriers share the same marginal cost parameters, b

and c.40 This assumption is primarily driven by data limitations, as our dataset from CTS

for 2015–2016 only provides aggregate TEU volumes, preventing us from modeling carrier-

specific heterogeneity in capacity utilization. However, this simplification allows us to di-

rectly link observed freight prices to observed aggregate capacity utilization ratios, enabling

a straightforward estimation of b and c via linear regression.

Figure 18 illustrates the positive relationship between freight rates and capacity utiliza-

tion, with estimation results summarized in Table 5. The coefficient b is significantly positive,

indicating an increasing marginal cost curve. This suggests that as vessel-level capacity uti-

lization nears 100%, the marginal cost of accommodating an additional container rises. This

result aligns with operational realities, as fully loaded vessels require longer loading and

unloading times, increasing handling costs.

40However, the slope of the marginal cost function varies across carriers as it depends on their deployed
capacity. See Equation 4 for further details.
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Figure 18: Freight price versus effective capacity utilization rate

Table 5: Step 1 estimation

Dependent variable:

rate norm

util (b) 2.354∗∗∗

(0.729)

Constant (c) −0.833
(0.577)

Observations 72
R2 0.130
Adjusted R2 0.117
Residual Std. Error 0.272 (df = 70)
F Statistic 10.436∗∗∗ (df = 1; 70)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 19: Capacity Utilization

C Static Model Fit

To evaluate the model fit, we divide the sample into an in-sample period (2015, shaded red

in Figure 19) and an out-of-sample period (October 2018 to December 2019, shaded blue in

Figure 19). The year 2015 is chosen as the in-sample period because it exhibits the greatest

variation in capacity utilization across carriers, driven by the downturn in aggregate demand.

We estimate the fixed cost parameters, f and α, using variation within the in-sample data

and then assess the model’s predictive performance on the out-of-sample period in 2019.

The model performs well in fitting the in-sample data (see Figure 20). It successfully

captures the cross-sectional variation across carriers, correctly predicting that carriers oper-

ating smaller vessels reduce their capacity utilization more drastically than those with larger

vessels. Additionally, the model tracks the overall time-series trend, reinforcing the accuracy

of its estimated relationship between aggregate demand and capacity utilization. The cor-

relation between model-generated and observed capacity utilization rates is 0.62 (see Figure

21).

For the out-of-sample period, while the model fit is weaker compared to the in-sample
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Figure 20: Model Fit: In-sample capacity utilization

Note: The dotted line is the model predicted capacity utilization and the solid line is the capacity utilization
in the data.

period, it still captures key cross-sectional variations across carriers. Specifically, it correctly

predicts that THE Alliance, which operates smaller vessels, experiences lower capacity uti-

lization during demand downturns (see Figures 22 and 23).

D Dynamic model fit

We compare the model-generated and empirical transition paths for both the average vessel

size (Figure 24) and the number of players in the market (Figure 25). The model fits the

observed trajectory of vessel size growth well, closely matching the empirical trend. However,

the model predicts industry consolidation—reducing from five to four players—earlier than

observed in the data. This discrepancy suggests that either the pace of consolidation in

reality is slower due to unmodeled frictions, or that additional strategic considerations, such

as coordination challenges or regulatory constraints, may delay firm exits in practice.

To provide intuition on the identification of key dynamic parameters, the investment cost
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Figure 21: Model Fit: In-sample capacity utilization dotted plot

Note: This graph plotted the model generated capacity utilization (y-axis) against the observed capacity
utilization in the data (x-axis).

Figure 22: Model Fit: Out-of-sample capacity utilization

Note: The dotted line is the model predicted capacity utilization and the solid line is the capacity utilization
in the data.
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Figure 23: Model Fit: Out-of-sample capacity utilization dotted plot

Note: This graph plotted the model generated capacity utilization (y-axis) against the observed capacity
utilization in the data (x-axis).

parameter ι primarily governs the speed of vessel size upgrades. Since larger vessels reduce

per-unit operating costs, carriers have an incentive to invest, and the empirical trajectory of

vessel size growth provides identification for ι. Meanwhile, the maintenance cost parameter

(m) and entry cost parameter (ζ) shape the market structure by influencing firm survival

and new entry decisions. These parameters are identified through the observed number of

active alliances during the sample period, as they determine whether firms find it profitable

to remain in the market or whether new entrants can viably compete. The interplay of

these costs captures the long-run industry equilibrium, where firms balance the benefits

of operating larger vessels against the financial burden of maintaining their fleet and the

barriers to entry.
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Figure 24: Model Fit: Average vessel size

Note: The black line with shaded confidence interval is the model predicted average vessel size and the red
line is the vessel size observed in the data.

Figure 25: Model Fit: Number of firms

Note: The black line with shaded confidence interval is the model predicted number of players and the red
line is the number of player observed in the data.
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E Price Dynamics Under The Same Total Capacity

Even when the total industry capacity remains constant, differences in the equilibrium com-

position—specifically, the number of firms and the average vessel size—can have significant

implications for freight prices and consumer welfare. This distinction arises because, during

demand downturns, carriers do not operate their entire fleet, adjusting their deployed ca-

pacity in response to market conditions. Carriers with smaller vessels, on average, tend to

reduce their capacity utilization ratios more sharply than those operating larger vessels, as

smaller ships are less cost-efficient at lower utilization rates. This variation is central to our

earlier identification and estimation of economies of scale.

To further explore this dynamic, we examine how different industry structures—varying

in the number of firms and vessel sizes—translate into different pricing patterns. In an

equilibrium characterized by fewer firms operating larger vessels, the total deployed capacity

during downturns is higher than in an equilibrium with more firms operating smaller vessels.

This occurs because firms with larger vessels face stronger cost incentives to maintain higher

utilization levels, leading to a less pronounced contraction in active capacity. Consequently,

the equilibrium structure not only influences the average freight price but also affects price

volatility and market stability. In a more consolidated market with larger vessels, prices may

be more stable during downturns due to higher deployment persistence, but the reduction

in competition could lead to higher prices in the long run. Conversely, a market with more

firms and smaller vessels may exhibit greater price fluctuations, as firms adjust their capacity

more aggressively in response to demand shocks.

These differences underscore the broader welfare implications of industry consolidation

and vessel size growth. While larger vessels reduce costs through economies of scale, the

corresponding reduction in market competition may offset these efficiency gains, particularly

in periods of demand volatility. Understanding these trade-offs is crucial for policymakers

evaluating the competitive effects of technological advancements in the shipping industry.
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Figure 26: Different Step Sizes: Total Capacity

Note: Total capacity under different innovation step sizes.

F Transition Path and Long-run Equilibrium

F.1 More Details on Innovation Step Size

F.2 Initial State

In the main text, we examined how different innovation step sizes influence the transition

path and long-run equilibrium of the industry. We now turn our attention to another critical

factor: the role of initial industry conditions. Specifically, we analyze how different starting

states affect the transition dynamics and the speed of market consolidation. To isolate the

effect of initial conditions, we consider two counterfactual cases:

1. Case 1: The industry starts with five carriers, each operating an average vessel size

of 14,000 TEU.

2. Case 2: The industry starts with five carriers but with an uneven vessel size distribu-

59



tion: three carriers operate vessels of 12,000 TEU, one operates vessels of 16,000 TEU,

and one operates vessels of 18,000 TEU.

To ensure that the observed differences arise purely from initial conditions, we hold both

the total industry capacity and the innovation step size constant across both cases. The only

variation is that Case 1 begins with a symmetric industry structure, while Case 2 starts with

a more heterogeneous distribution of vessel sizes.

Figure 27 presents the transition paths of both cases. Despite differences in initial con-

ditions, we find that both scenarios ultimately converge to the same long-run equilibrium.

However, the speed of transition differs significantly: the market consolidates much faster

in the asymmetric case (Case 2). This result is consistent with our dynamic estimation,

which shows that the incentive to invest is much stronger for follower firms than for market

leaders. In an industry that starts from an uneven initial state, follower firms invest more

aggressively to remain competitive, accelerating the consolidation process. Conversely, when

all five firms begin at similar positions, the investment and consolidation dynamics unfold

more gradually.

Another notable observation is the self-reinforcing relationship between investment and

market consolidation. In the asymmetric case, the initial imbalance between firms leads to

faster market consolidation as weaker firms struggle to keep pace with larger competitors.

This early consolidation, in turn, strengthens the incentive for firms to invest in larger

vessels, further accelerating the transition. This amplification effect underscores how initial

asymmetries in market structure can significantly influence industry dynamics.

Figure 28 plots the trajectory of freight prices under the two scenarios. On average,

prices are higher in the asymmetric initial state case, as market consolidation occurs more

quickly, leading to reduced competition. However, this conclusion does not hold universally.

Whether an asymmetric initial state benefits or harms consumer welfare depends on whether

the long-run equilibrium itself is more or less competitive. For example, in this case, the

asymmetric initial state amplifies the negative welfare impact on consumers by accelerating
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Figure 27: Different Initial State: Transition Path

Note: The top panel shows the number of players in the market over time, and the bottom panel shows the
average vessel size.

61



Figure 28: Different Initial State: Price

Note: Price dynamics under different initial states.

capacity reduction, as shown in Figure 29.

Thus, the welfare implications of different initial states depend on the nature of the long-

run equilibrium. If the ultimate equilibrium supports greater competition and consumer

welfare, an asymmetric initial state will expedite these benefits. Conversely, if the equilibrium

leads to higher market concentration, an asymmetric initial state will exacerbate its negative

effects. The transition path, in essence, serves as an amplifier, magnifying the welfare effects

of the final industry structure.
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Figure 29: Different Initial State: Total Capacity

Note: Total capacity dynamics under different initial states.
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